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A new family of asymmetric models for item response theory: 

A Skew-Normal IRT family 

 

Abstract 

Normal assumptions for the latent variable and symmetric item characteristics curves have been 

used in the last 50 years in many psychometric methods for item-response theory (IRT) models.  

This paper introduces a new family of asymmetric models for item response theory, namely the 

skew-normal item- response theory (SN-IRT) model. This family extends the ogive normal 

(symmetric probit-normal) model by considering: a) an accumulated skew-normal distribution for 

the item characteristic curve and b) skew-normal distributions are assumed as priors for latent 

variables for modeling individuals’ ability. Four models compose the SN-IRT family: skew-

probit-skew-normal, skew-probit-normal, probit-skew-normal and probit-normal models as a 

particular case. Hence, the SN-IRT is a more flexible model for fitting data sets with dichotomous 

responses. Bayesian inference methodology using two data augmentation approaches for 

implementing the MCMC methodology is developed. Model selection between symmetric and 

asymmetric models is considered by using the deviance information criterion (DIC) and the 

expected AIC and expected BIC and by using latent residuals. The proposed penalization 

(asymmetry) parameter is interpreted in the context of a particular data set related to a 

mathematical test. Suggestions for use the in news applications of skew probit propose in the 

paper are discussed. 

Key words: skew probit link, item response theory, Bayesian estimation, normal ogive model, 

skew-normal distribution, binary regression 
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The Item Response Theory (IRT) for multivariate dichotomous responses resulting from n 

individuals evaluated in a test with I items, considers a latent variable U that explains (is 

associated to) individuals ability and a set of parameters associated to the items under 

consideration. Different characterizations have been considered in the literature over the last 40 

years regarding the status of the latent variables (Borboom et al., 2003), such as latent parameter 

and latent variable; with  Bayesian and classical interpretations (see Rupp et al., 2004). In this 

paper we consider the characterization due to Holland & Rosembaum (1986) and Bartholomew & 

Knoot (1999) and the Bayesian interpretation given by Albert (1992). 

IRT models analyze the probability of correctly answering the items of a test as a function of a 

linear relationship involving item parameters and examinees abilities. Formally, let yij the 

dichotomous (or binary) response corresponding to the ith individual, i=1,...,n, on the jth item, 

j=1,...I, which takes the value 1 if the response is correct and 0 otherwise. It is considered that: 

)(~ ijij pBernY  (Bern: Bernoulli distribution) with ijp = ),|1( jiij uYP η=  being the probability 

that the ith examine is able to answer the jth item correctly. In fact, ijp  is the conditional 

probability of correct response given the ith ability value ui and jth item parameters ),( jjj βαη = . 

It is considered that ijp = )( ijmF , where, the function F  links the probability ijp  with the linear 

function )( jijij um βα −= . In the literature F  is known as the item response curve or the item 

characteristic curve (ICC), it is common for all i, and all j, and satisfy the latent monotonicity 

property (Holland and Rosembaum, 1986). Moreover, the IRT model satisfies the latent 

conditional independence principle  (known as "independence local" in the psychometric 

literature), which considers that for the ith examinee Yij is conditionally independent given ui,. It is 

also considered that responses from different individuals are also independent. Considering the 
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above assumptions for the IRT model, the multivariate joint density of TT
n

T YYY ),,( 1= , with 

T
iY = ),,( 1 iIi YY , given the vector of latent variables Tu = T

nuu ),,( 1  and the item parameter 

vector Tη = ),,( Ij ηη  can be written as  

              ),|( ηuYp  = [ ] [ ]∏∏
= =

−−
n

i

I

j

Y
ij

Y
ij

ijij mFmF
1 1

1)(1)( ,  i = 1, . . . , n,   j = 1, . . . , I                 (1) 

An assumption added to the model is that ),(~ 2σµNU i , which establishes that the latent 

variables associated with the individuals taking the test are well behaved and that their abilities are 

a random sample from this distribution (Albert, 1992). Specification of values for µ  and 2σ  (as 

in Albert (1992), who considers µ  = 0 and 2σ = 1) or specification of distributions for µ  and 2σ  

(as in Patz & Junker, 1999) solves the identifiability problem for the IRT model. The model is not 

identifiable since it is possible to preserve the model  (likelihood) by conveniently transforming 

the parameters. As also pointed out in Albert & Ghosh (2000) this model involves n + 2I + 2 

unknown parameters which means that it is overparameterized. Other characteristics of IRT 

models are listed, for example, in Albert & Ghosh (2000), Rupp et al. (2004), Patz & Junker 

(1999) and Bazán et al. (2004).  

Item-Response Theory is a set of models used for modelling variables related to human behavior, 

replacing observed scores for the items of a test. Since these variables are not observable, they are 

assumed as latent variables. Statistical assumptions in modeling academic achievement and other 

variables associated with human behavior are based on the normality assumption of the 

distribution of the scores. Several authors have questioned this assumption (see Samejima, 1997 

and Micceri, 1989) since it is somewhat restrictive for modelling human behavior. Micceri (1989) 

presents examples of situations where the latent variables can be assumed not normally 

distributed. In an investigation of the distributional characteristics of 440 large-sample 
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achievements and psychometric measures, Micceri (1989) found that 15.2% of the distributions 

had both tails with weights at or about the Normal, 49.1% of the distributions had at least one 

extremely heavy tail, and 18% had both tail with weights less than the normal distribution. Among 

ability measures, the percentages were similar with 19.5% having both tails with weights at or 

about the Normal, 57.6% having at least one heavy tail, and 22.9% having both tails less than the 

Normal. Amongst psychometric measures, 13.6% had tail weights near the Normal, 65.6% had at 

least one moderately heavy tail, and 20.8% had both tail weights less than the Normal.  

Lord considered the first IRT model in 1952, in which ijp = )( ijmF = .)( ijmΦ  where Φ(.) is 

the cumulative distribution function of the standard normal distribution. This model is known in 

the literature as the ogive normal model. In 1968 Birbaum introduced the logistic model, in which 

(.)F = (.)L is the cumulative distribution of the standard logistic distribution, known as the two 

parameter logistic model. A special feature of both models is the symmetric nature of the link 

function 1−F  or ICC F . By considering normally distributed latent variables a convenient 

nomenclature that we follow in this paper for those models are probit-normal and logit-normal 

models, respectively (see Bazán et al., 2004). This notation allows distinguishing the link function 

and the distribution associated with the latent variables.   

Chen et al. (1999) emphasizes that commonly used symmetric links for binary response data 

models, such as logit and probit links, do not always provide the best fit available for a given 

dataset. In this case the link could be misspecified, which can yield substantial bias in the mean 

response estimates (see Czado & Santner, 1992). In particular, when the probability of a given 

binary response approaches 0 at a different rate than it approaches 1, a symmetric link function, is 

inappropriate.  
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Samejima (2000) proposed a family of models, called the logistic positive exponent family, which 

provides asymmetric ICC and includes the ICC with logit link as a particular case. She considers 

that asymmetric ICCs are more appropriate for modelling human item response behavior. Also 

Samejima (1997) points out that there should be restrictions in using statistical theories and 

methods developed for something other than human behavior, in particular, those based on normal 

assumptions. One necessity under these circumstances is a departure from normal assumptions in 

developing psychometric theories and methodologies.  

In this paper a new asymmetric ICC curve F is assumed, by considering the cumulative 

distribution function of the standard skew-normal distribution (Azzalini, 1985). Moreover, a new 

latent variable distribution is assumed considering the skew-normal distribution. Considering 

simultaneously or separately, asymmetric ICC or asymmetric latent variables, a new family of 

IRT models can be formed. The new family defined is called as the Skew Normal Item Response 

Theory (SN-IRT) familiy and includes the symmetric probit-normal model as a special case, and 

hence extending the usual symmetric IRT models.  According to the methodology considered in 

this paper, four models can be proposed for a data set under consideration: 1) the symmetrical 

ogive normal, namely, the "probit-normal (PN) model", 2) the skew-normal ICC model, namely 

the “skew probit- normal (SPN) model”, 3) the ogive normal model with asymmetric latent 

variable, namely, the “probit-skew normal (PSN) model”, and 4) the model that considers both 

types of asymmetry, asymmetrical ICC and asymmetry in the latent variable, namely, the “skew 

probit-skew normal (SPSN) model”. 

The skew-normal distribution is an important asymmetric distribution with the normal distribution 

as a special case. Recent developments of asymmetric-normal models in the statistical literature 

include Azzalini & Dalla Valle (1996), Azzalini & Capitanio (1999) and Sahu et al. (2003). This 
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distribution has been considered in the psychometric context in Arnold (1993). The possibility of 

considering asymmetric ICC has been previously formulated in Samejima (1997) and a particular 

skew-normal distribution has been used as a link function in Chen et al. (1999) for dichotomous 

quantal response data in regression models. (see also Chen, 2004)  

The paper is organized as follows. Section 2 introduces the skew-normal item response theory 

model by considering the asymmetry parameter in the item characteristics curve, called here 

penalty parameter and by considering asymmetry in the latent variable. In the third Section, 

maximum likelihood fitting for the SN-IRT model is discussed. A Bayesian estimation approach 

is developed in Section 4 by using the MCMC methodology for simulating from the posterior 

distributions of item parameters and latent variables. Two data augmentation approaches are 

considered. In Section 5 an application with a data set from a mathematical test is reported 

comparing the presented models and also interpreting the proposed penalization  (asymmetry) 

parameter. 

2. The Skew-normal item response model 

2.1 A new asymmetric item characteristic curve: the skew probit ICC 

A new item characteristic curve IRT model is defined considering that the conditional probability 

ijp  of a correct response for item j, given the value ui of the latent variable corresponding to the 

ith individual, is given by 

ijp  = );( jijSN m λΦ =2 ( )j
T

ij dm −Φ ,)0,(2 , i = 1, . . . , n ,  j = 1, . . . , I        (2) 

with ∞<<∞− jλ , ( ) 2/121 j

j
jd

λ

λ

+
= ,  1<jd  , i = 1, . . . , n ,  j = 1, . . . , I. 

Where ΦSN (.) denotes the cumulative distribution function of the standard skew-normal 

distribution (Azzalini, 1985) and Φ2(.) is the cumulative distribution function of the bivariate 



 8

normal distribution  (see as the last expression is deduced in Appendix A), with jλ  the parameter 

of asymmetry of the skew-normal distribution and jd  the correlation coefficient in the bivariate 

normal distribution. Note that jd is a reparametrization (1-1 transformation) of jλ , so, it also seen 

as a parameter of asymmetry. 

In the above expression, the probability ijp  is expressed as a function of the quantity ui and the 

parameters ),( jjj βαη = and of jλ  (or jd ), which are parameters associated with item j. For 

λj=0,  ijp  reduces to ijp = )( ijmΦ , and the symmetric ICC probit follows. 

As a consequence of the properties of the cumulative skew-normal distribution, it can be verified 

that the ICC skew-probit is a monotone increasing function of the quantity ui, which is considered 

as a unidimensional latent variable. This means that the SN-IRT models are unidimensional 

monotone latent variable models (Junker & Ellis, 1997).  

Figure 1 shows skew-probit ICCs for different values of a latent variable U when fixing 

the item parameters α=1 and β=0 and varying asymmetric parameter values d. Six different ICCs 

are considered for d = −0.9, −0.7, −0.5, 0.5, 0.7,0.9 for comparison with d=0. For d = 0 (or λ=0), 

the ICC is symmetric and for d> 0 (or λ > 0) the ICC presents positive asymmetry, and for d < 0 

(or λ < 0), its presents negative asymmetric. The ICC skew-probit is asymmetric as in the case of 

the family of positive exponent logistic models considered in Samejima (1997, 2000), which also 

considers an asymmetric item parameter called acceleration parameter. The ICC that we propose 

is an extension of the probit ICC, by directly introducing an asymmetry parameter. The 

asymmetric part is contained in the cumulative distribution of the standard normal distribution 

Φ(λj z). Further comments considering asymmetric ICC will be given in Section 4.3. 
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FIGURE 1. Skew-probit ICCs  for (α=1, β= 0) and different values of the asymmetry parameter d  

 

The distance between the probabilities associated with the two ICCs (skew-probit and probit) at a 

point z, that is, |Φ(z) − Φ(z, λj)|, is at most arctan( | λj | )/π (see Property 6, Appendix A). This 

means that if the model presents increasing positive asymmetry, then the probability of a correct 

response for considering a skew-probit ICC is diminished with respect to the symmetric probit 

ICC. On the other hand, if¸ the model presents increasing negative asymmetry; the skew-probit 

ICC presents increasing probabilities of a correct response with respect to the symmetric probit 

ICC. Such changes in the probability of a correct response occur due to the changes in the shape 

of the characteristic curve. However, the changes are not uniform as the latent variable changes. 

For highly negative values of the latent variable there is little change on the probability of correct 

response. On the other hand, for highly positive values, there are great changes on the probability 
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of correct response. The item asymmetry parameter can be psychometrically interpreted as penalty 

(reward) of the probability of correct response. Hence, an item with negative asymmetry 

parameter penalizes (rewards) students with larges (smaller) levels of the latent variable and an 

item with positive asymmetry parameter rewards (penalizes) individuals with larger (smaller) 

levels of the latent variable (see Figure 1). Hence, we call the asymmetry parameter d as the item 

penalization parameter.  

Figure 2 presents six different characteristic curves assuming different values for λj, the 

asymmetry parameter. The first three curves consider additional variations in the parameter βj with 

αj fixed. The last three curves consider variations in the parameter αj with βj fixed. The parameter 

βj is called the item intercept or item difficulty parameter. This parameter controls item difficulty 

levels. If we fix the parameters αj and βj and increment the value of βj , the basic form of the 

characteristic curve does not change but is translated to the right. Curves C1, C2 and C3 in Figure 

2 correspond, respectively, to (αj = 1, βj = −1), (αj = 1, βj = 0), and (αj = 1, βj  = 1). 

An item of a test with a highly negative value of βj (curve C1) corresponds to an easy item in 

which individuals with smaller averages in the latent variable presents relatively low probability 

of correct response. In contrast, an item with a large value of βj (curve C3) is difficult since 

individuals with large levels of the latent variable presents relatively low probability of correct 

response. The behavior of this parameter for the skew-probit ICC can be observed in Figure 2 for 

different values of the asymmetry parameter. 
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FIGURE 2. Skew-probit ICCs for different values of the (α , β) item parameters and the 

penalization parameter λ 

 

The parameter αj is called slope or discrimination parameter. This parameter controls the slope of 

the response function of an item. If we consider an ICC with βj and λj fixed, the curve is steeper 

for increasing values of αj. The curves C4, C5 and C6 in Figure 2 correspond, respectively, to (αj 

= 0.5, βj = 0), (αj = 1, βj = 0) and (αj = 2, βj = 0). A steeper item response curve corresponds to an 

item that highly discriminates students of smaller and greater levels of the latent variable. The 

probability of correct response changes rapidly for higher values of the latent variable in an 

interval containing zero. This means that the probability of correct response changes just a small 

amount when the latent variable goes from a student with lower latent variable values to a student 
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with higher latent variable values. An item with a small value of αj is a relatively poor 

discriminator between students for changing values of the latent variable.  

In summary, the interpretation of the item parameters (αj , βj), is the same for probit ICC and 

skew-probit ICC in the usual probit-normal model and the SN-IRT model.  

Following different proposals in the literature, we reparameterized the model introduced by 

considering α=a and αβ−=b  such that jijij buam −= , with ),( jjj ba=η  the item parameter 

corresponding to jth item. According to Cook et al. (2002) and Baker (1992) this parameterization 

resulted in more stable computations. We use the notation a = T
Iaa ),,( 1 and b = T

Ibb ),,( 1 .  

2.2 Asymmetrically distributed latent variable 

A new distribution for the latent variable Ui corresponding to ith individual can be defined 

considering 

Ui ~ SN (µ , σ2, κ ),  i = 1, . . . , n,      (3) 

 which denotes the skew-normal distribution with location parameter ∞<<∞− µ , scale 

parameter 02 >σ  and asymmetry parameter ∞<<∞− κ . See Appendix A for some properties 

of this distribution. Its density function is denoted by ),,;( 2 κσµφ uSN . 

Hence, we are considering that the latent variable follows a skew-normal distribution with 

common asymmetric parameters κ for the individuals. It is our opinion that asymmetry does not to 

change from individual to individual since it is a property of the distribution of the latent variable.  

Figure 3 shows the density functions of latent variables for different values of hyperparameters µ 

and σ2 and for the asymmetry parameter κ.  The three curves on the right side are examples of 

positive asymmetry parameter κ, modeling latent variables concentrated on lower values. The 

three curves on the left side are examples of negative asymmetry parameter κ modeling latent 
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variables concentrated on higher values. As a reference, in all cases, the N(0,1) curve is also 

presented. 
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FIGURE 3. Different density functions describing latent variables skew-normally distributed 

SN(µ , σ2, κ ) 

 

Note that the curves showed in Figure 3 may correspond to the distribution of latent variables 

corresponding to human behavior in different cases, as observed in Micceri (1989). Examples of 

such behavior are depression (see Riddle et al. 2002) and anxiety (see Zaider et al., 2003) where 
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certain asymmetry is expected considering a non-clinic population. Moreover, in educational 

contexts several predictor variables related to school proficiency can be asymmetrically 

distributed, as noted in Hashimoto (2002) and Vianna (2003). Then, the skew normal distribution 

is a flexible model for modeling of latent variables and accommodates the normal distribution as 

an especial case.  

2.3 The Skew-Normal Item-Response Theory family 

Formally, the SN-IRT family is defined by considering the specification of the news asymmetric 

ICCs and asymmetry distributions for the latent variable.  Four SN-IRT models are possible by 

considering two or just one type of asymmetry on the specification of the ICC curve and on the 

specification of the distribution of the latent variable. They are: 

a) The skew-probit skew-normal (SPSN) model,  

b) The skew-probit-normal (SPN) model in that κ=0; 

c) The probit-skew-normal (PSN) model in that dj=0;  

d) The probit-normal (PN) model in that κ=0 and dj=0.  

Note that the PN model is a special case of the SN-IRT model. An interesting aspect of the models 

formulated above are the flexibility in detecting items specified according to ICCs with skew-

probit links and items specified according to ICCs with probit links. As such, the SN-IRT family 

presents flexible models for mathematical modelling of the psychological and educational 

behavior, based in deductive processes (Samejima, 1997) and fulfill the search for models that fits 

the behavior in question theoretically. Inductive processes (Samejima, 1997) as nonparametric 

IRT are just important as deductive processes and dynamic uses of both processes enable us to 

simulate human behavior.  Besides, the link function studied in this paper can be also, considered 
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for regression models with multivariate binary outcomes (see Chib & Greenberg, 1998) in which 

mij=Xij
Tβj with βj a vector of unknown parameters, and Xij a vector of covariates.  

3. Maximum Likelihood Fitting 

Let Dobs = y denotes the observed data, so that the likelihood function for the SN-IRT family is 

given by 

                           )|,,( obsDL ληµ = [ ] [ ]∏∏
= =

−Φ−Φ
n

i

I

j

y
jijSN

y
jijSN

ijij mm
1 1

1);(1);( λλ .                                    (4) 

Using the equivalent representation for the cumulative distribution function of the skew-normal 

distribution (see appendix A), we can be writing 

                            )|,,( obsDdL ηµ = ( )[ ][ ] ( )[ ][ ]∏∏
= =

−
−Φ−−Φ

n

i

I

j

y

j
T

ij

y

j
T

ij
ijij dmdm

1 1

1

22 ;0,21;0,2 .            (5) 

As in the case of the probit-normal model, computing the maximum likelihood estimators or the 

observed Fisher information matrix using the likelihood above is simplified if we have available 

procedures for computing bivariate integrals. Joint maximum likelihood (JML) estimates similar 

to the ones used with the probit-normal model can be implemented for the estimation of u,η and λ 

(or d). Estimates can be obtained by iteratively maximizing the likelihood over either item 

parameters or latent variables while treating the other group of parameters as fixed at their current 

values (Baker, 1992). However, limitations of this method are well known (see Baker, 1992, and 

Bock & Aitkin, 1981). Assuming the latent variable or the item parameters known, we can also 

implement separated maximum likelihood estimators for the latent variables and item parameters. 

Another procedure based on the “divide-and-conquer” strategy (Patz & Junker, 1999) for 

estimating only the item parameters η and λ  (or d) is the marginal maximum likelihood (MML) 

approach. The procedure can be developed by implementing an EM type algorithm as considered 

in Bock & Aitkin (1981) treating the latent variables as missing data and requiring the 
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specification of a distribution for the latent variable U. As we propose to consider a skew-normal 

distribution for the latent variable with common asymmetry parameters for individuals, i.e. Ui ~ 

SN (µ,σ2, κ), i = 1, . . ., n, it follows that the marginal likelihood function for the SN-IRT model 

with interest on the item parameters can be written as: 

               )|,( obsDL λη = [ ] [ ] duumm SN

n

i

I

j

y
jijSN

y
jijSN

n

ijij ),,;();(1);( 2

1 1

1 κσµφλλ∫∏∏
ℜ = =

−Φ−Φ .             (6) 

Estimation procedures based on the EM algorithm can be implemented by using Gaussian 

quadrature as a way of dealing with the multiple integral in the likelihood. The same approach can 

be used with the likelihood expressed in terms of the truncated bivariate normal distribution 

parameterized with dj. However, as mentioned in Patz & Junker (1999) as the complexity of the 

model increases, as in the SN-IRT model situation, using the EM algorithm becomes less 

straightforward and is difficult to incorporate uncertainty (standard errors) into the item estimation 

of the parameters and in calculations of uncertainty (standard errors) for inferences on examinees 

(individuals), and there is no way of assessing the extent to which standard errors for examinee 

inferences are overly optimistic because of this. Chen et al. (1999) discuss conditions on existence 

of maximum likelihood estimators in probit models with skew-normal links, which can be 

extended to the models considered in this paper. 

4. Bayesian Estimation 

4.1 Priori Specification 

Considering the likelihood function above, it is possible to implement a Bayesian estimation 

procedure by incorporating prior distributions for u, η and λ (or d). For the SN-IRT familiy, we 

consider the following general class of indepents prior distributions: 

),,( ληπ u =∏ ∏
= =

n

i
jj

I

j
jejii ggug

1
3

1
1 )()()( λη ,   ( 7 ) 
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where g2 j(ηj ) = g21 j( ja )g22 j( bj )  in which g21 j(.) should be proper to guarantee a proper posterior 

distribution (see Albert & Ghosh, 2000 & Ghosh et al. 2000). Following proposals usually 

considered (see Rupp et al., 2004), we take g21 j(.) as the density of the N( aµ , 2
as ), j = 1, . . . , I, 

and g22 j(.) as the density of N(0, s2
b),  j = 1, . . . , I,  the normal distribution, so that g2 j (.) is the 

density of the N2(µη , Ση), with mean vector µη
T = ( aµ , 0)T and variance-covariance matrix 

Ση= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

2

0
0

b

a

S
S

. 

Additionally, we consider g1i(.) as the density of the SN(ui ; κ), i = 1, . . . , n, and g3 j (.)  as the 

density of the SN(λ j; ω), j = 1, . . . , I , where aµ , 2
as , s2

b, κ and ω are known. In more general 

situations where κ and ω are also unknown, the prior structure needs to be enlarged so that prior 

information are also considered for those hyperparameters. A possible extension of the model 

follows by considering g1 i(.) as the density of the SN(ui ; µ, σ2, κ), i = 1, . . . , n, with adequate 

specification of the hyperparameters µ, σ2 or by specifying hyperpriors for them. 

Using the Bernoulli likelihood type and the prior distribution above it is possible to obtain 

posterior distributions and implement a Bayesian estimation procedure using the WinBUGS 

scheme (Spiegelhalter et al., 2003). However, such an approach is complicated because the 

integrals involved to obtain the marginal posterior distributions involve the cumulative function of 

the skew-normal distribution, which is not available in WinBUGS.  We use instead an approach 

based on data augmentation as considered in Albert (1992) and Sahu (2002) for the PN model. 

This approach allows the implementation of Markov chain Monte Carlo methods, which simplify 

efficient sampling from the marginal posterior distributions. 
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4.2 Data augmentation approach 

Using auxiliary latent variables, where these underlying variables have a standard skew-normal 

distribution, motivates our approach. The result that we present next is an extension of a similar 

result in Albert (1992) for the case of the PN model and is obtained using Property 6 in Appendix 

A.  It can be shown that the skew-probit link in the SN-IRT family, involving I items and n 

individuals, with )(~ ijij pBernY  and ijp  = ),,|1( jjiiij uUYP λη==  = );( jijSN m λΦ in which 

jijij buam −= , is equivalent to considering that 

⎩
⎨
⎧

≤
>

=
0,0
0,1

ij

ij
ij Z

Z
y ,   where Zij ~ SN(mij , 1,−λj),  i = 1, . . . , n,  j = 1, . . . , I. 

Clearly, in the special case of λj = 0,  j = 1, . . . , I, the corresponding result in Albert (1992) for the 

symmetric PN model follows. The auxiliary latent variables Zij are introduced to avoid working 

with Bernoulli type likelihoods. As a consequence of property 5 in the Appendix A it follow that 

the asymmetry parameter with the auxiliary latent variable is the opossit (in sign) of the 

asymmetry parameters with the ICC. In the following, we use the notation TT
n

T ZZZ ),,( 1= , 

with T
iZ = ),,( 1 iIi ZZ  the vector of auxiliary latent variables. The next result follows from the 

previous results. The complete-data likelihood function for the SN-IRT models with skew-probit 

link and D = (Z ,y) is given by 

)|,,( DL ληµ = ( )∏∏
= =

−
n

i

I

j
ijijjijij yZImZ

1 1

),(,1,; λφ                                       (8 ) 

where jijij buam −=  , and ( ) ( ) ( ) ( )0010),( =≤+=>= ijijijijijij yIZIyIZIyZI , j = 1, . . . , I and i 

= 1, . . . , n, is used on the derivation of the conditional likelihood ( )ijij Zyp | . Note that, if λj=0 

then the likelihood function above is equal to the one given in Albert (1992). Hence, the PN 

model is a reduced model in the SN-IRT family. 
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Considering the SN-IRT family with complete likelihood and prior distributions above for u, η 

and λ, the full posterior distribution corresponding to u, η ,λ and Z is given by 

),,,( Zuf λη ( ) ∏ ∏∏∏
= == =

Σ−∝
n

i
jSN

I

j
jiSN

n

i

I

j
ijijjijijSN uyZImZ

1 1
2

1 1

):(),:();(),(,1,; ωλφηµηφκφλφ λ   (9) 

This distribution has an intractable form and will be very difficult to simulate from it. Therefore, a 

Gibbs sampling algorithm will be used where the three steps of the original algorithm by Albert 

(1992) are extended to four steps. Each step consists of sampling from the posterior distribution of 

one of the four parameter vectors u, η, λ and Z conditionally on all other parameters. This full 

conditional distribution should be tractable and easy to simulate from. The main steps for 

posterior in the Equation 8 are:  

Step 1 Sampling Z. Given u, η and λ the variables Zij are independent, and Zij | u, η ,λ is distributed 

as the SN(mij, 1,−λj ) truncated at the left by 0 if yij =1 and truncated at the right by 0 if yij =0, for i 

= 1, . . . , n and j = 1, . . . , I. 

Step 2 Sampling u. The latent variables are independent given η ,λ and Z, with  

),,,,|( obsji DZu ληπ )(),:( iuui uvmu
ii
ψφ∝ , i = 1, . . . , n, 

where 

( )

∑

∑

=

=

+

+
= I

j
j

I

j
jijijj

u

a

bZa
m

i

1

2

1

1
, 

∑
=

+
= I

j
j

u

a
v

i

1
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1
, and )()()(

1
i

I

j
ijijji kumZu Φ−−Φ=∏

=

δψ , 

 Step 3. Sampling η . The classical item parameters are independent given u , λ and Z with 

),,,|( obsjjj DZu ληπ )(),;(2 jj jj
vm ηψηφ ηη∝  for j = 1, . . . , I, 

with ( )∏
=

−−Φ=
n

i
j

T
iijjj WZ

1

)( ηληψ , mean vector [ ] [ ]
jjjj j

TT ZWWWm ηη µ
ηη

111 −−− Σ+Σ+=  and 

covariance matrix [ ] 11 −−Σ+=
jj

WWv T
ηη  where TT

n
T WWW ),,( 1= , )1,( −= i

T
i uW , i = 1, . . ., n. 
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Step 4. Sampling λ. The asymmetry parameters are independent given u,η and Z with 

)()(),,,|( jjobsjjj DZu λψλφηλπ ∝ in which )()()(
1

j

n

i
ijijjj mZ ωλδλψ Φ−−Φ=∏

=

, i = 1, . . ., n 

and j = 1, . . . , I. 

Note that some of the full conditionals cannot be directly sampled. For example, the case of the 

full conditional posterior for the parameter ηj requires algorithms such as the Metropolis-Hastings 

(Chib & Greenberg, 1995). Further, if κ=0 and λj = 0, j = 1, . . . , I, then it follows that the full 

conditional distributions become the ones in Albert (1992). 

4.3 An alternative data augmentation approach 

To overcome the difficulties described above we propose to incorporate extra latent variables by 

modifying the auxiliary latent variable Zij, j = 1, . . . , I and i = 1, . . . , n. These variables are 

considered next. Further, we consider the SN-IRT models in terms of the asymmetry parameter dj,  

j = 1, . . . , I, taking values in the interval (−1, 1), so that we can consider a uniform prior in (−1, 1) 

for g3 j (.) and hence hyperparameters are not necessary. To consider a uniform prior for dj it is 

equivalent to consider a Student-t distribution for λj with location 0, scale 1/2 and 2 degree of 

freedom (to see this, use the variable transformation 
21 d

d
−

=λ ).  

For n examinees responding to I items of a test it is known (Albert, 1992) that the probit link in 

the PN model should be rewritten as 

ijijij emZ += , with ije ~ N(0,1) and 
⎩
⎨
⎧

≤
>

=
0,0
0,1

ij

ij
ij Z

Z
y ,  i = 1, . . ., n and j = 1, . . . , I. 

It follows that ijp  = ),|1( jiiij uUYP η== = )( ijmΦ . This representation shows a linear structure 

in the auxiliary latent variable Zij normally distributed, which produces an equivalent model with a 
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probit link. Further, the error eij in the linear structure introduced are latent residuals independent 

and identical distributed (see Albert & Chib, 1995), a fact that can be used for model checking. 

Similarly, we define a linear error structure for the SPN and SPSN models with skew-probit link 

by considering that.  

        ijijij emZ += , with ije ~ SN(0,1, -λj ) and 
⎩
⎨
⎧

≤
>

=
0,0
0,1

ij

ij
ij Z

Z
y ,  i = 1, . . ., n and j = 1, . . . , I. 

Notice that ijp  = ),,|1( jjiiij uUYP λη==  = );( jijSN m λΦ . Using the stochastical representation 

for a skew-normal distribution (Henze, 1986, Property 7 in the Appendix A) we can write 

ije = ijjijj WdVd 2/12 )1( −−− , with Vij ~ HN(0,1), the half normal distribution, and Wij ~ N(0,1), the 

standard normal distribution. By considering this stochastical representation, the skew probit link 

that we propose is more general than the probit link and is different from a skew link as given in 

Chen et al. (1999) (see also Chen, 2004) where ije = ijjij VdW +  take a different skew normal 

distribution class (see Sahu et al. 2003).  It follows that the conditional distribution of eij |Vij = vij is 

a normal distribution with mean -djvj and variance 1 −dj
2  (see Property 8 in Appendix A). 

Moreover simulation of Zij in the lineal structure should be considered in two steps. First simulate 

Vij ~ HN(0,1) and then simulate the conditional Zsi j ≡ Zi j | Vi j= vi j ~ )1,( jijjij dvdmN −− . This 

defines an important hierarchical representation of the skew-normal distribution similar to the one 

derived for the Student-t distribution (see Arellano et al.,1994). In a similar way, the latent 

residuals in the probit link, the latent residuals ije  in the skew probit link are independent and 

identically distributed and also can be used for model checking.  

We consider now the new complete data likelihood function involving the conditional auxiliary 

latent variables TT
n

T ZsZsZs ),,( 1= with T
iZs = ),,( 1 iIi ZsZs , i=1,...,n, and 
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TT
n

T VVV ),,( 1=  with T
iV = ),,( 1 iIi VV , i = 1, . . . , n. The new complete-data likelihood 

function for the SN-IRT models with D = (Zs ,V, y) is given by 

 )|,,( DL ληµ = ( ) ( )∏∏
= =

>−+−
n

i

I

j
ijijijijjijijjij VIVyZsIdmVdZs

1 1

2 )0(1,0;),(1,; φφ ,        ( 10 ) 

where jijij buam −=  , and ( ) ( ) ( ) ( )0010),( =≤+=>= ijijijijijij yIZsIyIZsIyZsI , j = 1, . . . , I 

and i = 1, . . . , n, is used in the derivation of the conditional likelihood ( )ijij Zsyp | . Note that if 

dj=0 then the likelihood function above is similar to the one given in Albert (1992), and Vij  is not 

necessary.  

Considering the SN-IRT models with new complete likelihood in the Equation 9 and prior 

distributions for u, η and d given above, the full posterior distribution corresponding to u, η , d and 

Z, V  is given by 

),,,,( VZsduf η ( ) ( ) ×>+−∝∏∏
= =

n

i

I

j
ijijijijijijjij VIVyZsImVdZs

1 1
)0(1,0;),(1,; φφ  

∏ ∏
= =

Σ
n

i

I

j
jiSN u

1 1
2 ),:(),( ηηµηφκφ      (10) 

Although this density has an intractable form, we can simulate from it using a direct Gibbs 

sampling algorithm with five steps. Each step consists of sampling from the posterior of one the 

four-parameter vectors u, η, d, Z, and V conditionally on all other parameters. This fully 

conditional distribution should be tractable and easy to simulate from. Some algebraic 

manipulations yield:  

Step 1 Sampling Zs. Given u, η, d, and V, the variables Zsij are independent and distributed 

according to the )1,( 2
jijjij dvdmN −− ,  j = 1, . . . , I and i = 1, . . . , n; distribution truncated at the 

left by 0 if yij=1 and truncated at the right by 0 if yij=0.   
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Step 2 Sampling V. Given u, η, and d, the variables Vij are independent and distributed according 

to the )1),(( 2
jijijj dvmdHN −− ,  j = 1, . . . , I and i = 1, . . . , n; distribution truncated at the left by 

0.  

Step 3 Sampling u. The latent variables ui are independent given Zs, V, η  and d with  

),,,,|( obsjji DdVZsu ηπ )(),:( iuui kuvmu
ii
Φ∝φ , i = 1, . . . , n, 

where 
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2
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2

1
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I

j
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j
jijjijj
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m

i

−+

++
=

∑

∑

=

= , 
2

1

2

2

1

1

j
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j
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j
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−+
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=
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 ; 

 Step 4. Sampling η . Given Zs, V, u, and d, the item parameters ηj are independent and distributed 

according to the ),(2 jj nn vmN ,  j = 1, . . . , I , with mean vector 

[ ] ( )[ ]
jjjjj jjj

TT VdZsWWWm ηη µ
ηηη

1111 −−−− Σ++ΣΣ+=   and covariance matrix  

[ ] 11 −−Σ+=
jj

WWv T
ηη ,  where TT

n
T WWW ),,( 1= , )1,( −= i

T
i uW , i = 1, . . . , n:. 

Steps 5. Sampling d. Given Zs, V, u, and η, the asymmetry parameters dj are independent and 

distributed according to the ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
2

1,
ijij

ijij

VV
Zsm

N ,   j = 1, . . . , I. 

We call attention to the fact that the conditional distributions of Zs, u and η given the other 

parameters are as given in Johnson & Albert (1999) for the special case of the symmetric PN 

model. 

5. An application 

We illustrate the Bayesian approaches to SN-IRT family developed in the paper, using the data set 

corresponding to the Mathematics Test applied in Peruvian schools with the goal to estimate the 

item parameter, included the new asymmetry parameter and to show advantages of the SPN model 
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with respect to the PN model to capture more information on the item, in the presence of 

asymmetric scores.  

The prior specification, starting values to define the initial state of the Markov Chain, and 

convergence diagnostics for the Markov chain are discussed by implementing the MCMC 

algorithm for the second augmentation approach above. The MCMC procedure is based on results 

of Proposition 6 and implemented on WinBUGS software. 

We also present comparison of symmetrical and asymmetrical IRT models by using the Deviance 

Information Criterion (DIC) described in Spiegelhalter et al. (2002), a Expected Akaike 

Information Criterion (AIC) and Expected Bayesian Information (Schwarz) Criterion (EBIC) as 

suggested in Carlin & Louis (2000) and Brooks (2002) and sum-of-squared-latent residuals. 

Spiegelhalter et al. (2002) claim that the DIC as implemented in the WinBUGS can be used to 

compare complex models (see Johnson, 2003, for example) and large differences in the criterion 

can be attributed to real predictive differences in the models, although there are critics to this 

approach. In hierarchical modelling with auxiliary latent variables as in the SN-IRT family, the 

likelihood (or "model complexity”) is not unique so that the deviance (and also DIC and ρD which 

are based on it) of a model with latent variables is not unique and can be calculated in several 

ways (see Delorio and Roberts, 2002). With auxiliary latent variables, WinBUGS uses a complete 

likelihood of the observed variable and the auxiliary latent variable introduced (as fixed effects 

and random effects in hierarchical modeling) to obtain posterior distributions for the parameters of 

interest. When this is the case, marginal DICs for the observed variables (fixed effects) and 

auxiliary latent variables (random effects) are presented. For a proper comparison of the proposed 

models, we considered marginal DIC for the observed variable because the focus of the analysis is 

in  p( y | u, η) and although auxiliary random variables are introduced (in two steps) they are not 
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the focus of the analysis. On the other hand, EAIC and EBIC are criterions proposed in Carlin & 

Louis (2000) and Brooks (2002) that penalizes the Posterior expected deviance by using 2p and  

plogn, respectively, where as usual p is the number of parameters in the model, and n is the 

number of datapoints. As in Yan et al. (2003) we used the posterior sum of squares of latent 

residuals (SSR=∑∑
= =

n

i

I

j
ije

1 1

2 ) for the data set as a global discrepancy measure for models 

comparison. 

5.1 Implementing the MCMC Algorithm 

Prior specification 

As have been mentioned, proper priors for ja and jb guarantee that the complete posterior for the 

model is proper. Albert & Ghosh (2000) mentions that the choice of proper prior distributions for 

the latent trait resolves particular identification problems, further, informative prior distributions 

placed on ja and jb can be used to reflect the prior belief that the values of the item parameters are 

not extreme (in the frontier of the parametric space). In the common situation where little prior 

information is available about the difficulty parameters, we can choose 2
bS  to be large. This 

choice will have a modest effect on the posterior distribution for non-extreme data, and will result 

in a proper posterior distribution when extreme data (where students are observed to get correct or 

incorrect answers to every item) is observed (Albert & Ghosh, 2000). Furthermore Sahu (2002) 

states that larger values of the variance led to unstable estimates. In Bazán et al. (2004) it is 

compared the use and perfomance of six different priors in literature for discrimination and 

difficulty parameters in the PN model. A sensitivity analysis by checking model adequacy that 

follows by using a series of prior distributions is conducted. It includes the specification of vague 

prior distributions for the difficulty parameters and precise parameters for the discrimination 
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parameters. The priors specified were suggested in previous studies by other authors. The 

different priors considered lead to similar estimates of the DIC (described in Spiegelhalter et al., 

2002) leading to the conclusion that the Bayesian analysis for the data set under consideration is 

not sensitive to the priors considered. However, the priors considered in Sahu (2002), which 

specifies that ja ~N(1; 0.5)I(0; ) and jb ~N(0; 2), j = 1,...,I, seems to us the most adequate because 

it results in great precision for discrimination and difficulty parameter estimates. 

For the models with link skew-probit, i.e., SPN and SPSN models, priors were specified for dj  and 

not (directly) for λj, j = 1, . . . , I, . The prior specified for dj is U(−1, 1). 

For the models with asymmetry in the latent variable, i.e. SPSN and PSN models, we can  

consider Ui ~ SN(κ), i=1, ... ,n. We consider with the SPSN model used for comparison,  the 

values suggested by the scores in the test which for data set  is question leads to µκ =-0.804 and 

σκ
2=6.329 . This specification is based in that the distribution of the scores in the test is a gross 

approximation to the distribution of the latent variable.  

Initial values 

We considered, as in Spiegelhalter (1996), initial values 1 and 0 for the item parameters aj  and  bj,  

j =1 . . . , I, respectively. For the SPSN model we consider value 0 for the parameterκ. For the 

SPN and SPSN models we propose as initial values dj = 0 for the asymmetry parameters because 

it corresponds to the mean/expected value of the uniform distribution on (−1, 1). Initial values for 

the latent variable Ui and auxiliary latent variables corresponding to the different models (as Vij 

and Wij), are considered as generated from standard normal distributions. 

Markov chain convergence 

Model SPSN is the more general. In the Math data set it involves 42 item parameters and 131 

individual traits for the 131 individuals in the sample, but we can be interested only in the mean 
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and standard deviation of the latent traits. Because a great number of chains must be generated for 

the different parameters, the MCMC procedure becomes slow (with the algorithm considered, PN 

model takes about 1 minute to run 1000 iterations on a Pentium IV Processor with 256 MB 

RAM). Informally, under the SPN model it takes twice the time it takes under the PN model; 

under SPSN model it takes about 1.5 times it takes under the PN model, and the generation was 

fastly complicated under PSN model. The time needed to run the chains for each model is also 

related to the presence of structures of the latent variables and mixtures (Chen et al. 2000), and to 

sample size (Sahu, 2002), which may significantly affect time of execution of SN-IRT models.  

When using MCMC, the sampled values for initial iterations of the chains are discarded because 

of their dependence on starting states. Also, with SN-IRT models, presence of autocorrelations 

between chain values is expected when latent variables are introduced (Chen et al. 2000). Due to 

it, thin values up to 100 are recommended.  Several criteria computed using the CODA package in 

the WinBUGS program, including the ones proposed by Geweke (1992) was used for to 

convergence analysis. An alternative to considerer is generate a great number of iterations and 

uses large values of thin. For example, Jacmank (2004) consider for the PN model, run half a 

million of iterations retain only every thoushandth iterations so as to produce an approximately 

independent sequence of sampled values from the joint posterior density. 

Also Chen et al. (2000) mentioned that when the sample size n is large, (n ≥ 50) slow converge of 

the Albert-Chib algorithm (data augmentation approach) may occur. Slow-converge of the chain 

corresponding to the asymmetry parameter is detected. Some algorithms to improve converge of 

the Gibbs sampler in the second data augmentation approach is suggested in Chen et al. (2001). 

Here we consider a large number of iterations, a total of 204000 iterations. Starting with a burn-in 

of 4000 iteration and them using thin=100, a sample size of 2000 is obtained.  
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5.2 Item Parameter Estimation: The Elementary-School Mathematics Test Example  

In educational evaluation research it is typical to detect differences in scholar performance due to 

social-economic status. As an example, in a study conducted in Peru, Bazán et al. (2001) report 

differences observed in a mathematical test for sixth grade students in favor of students with 

higher social-economic status. Test scores show a negative asymmetric distribution since most of 

the students with higher social-economic status tend to obtain higher scores in the test. 

In this application, 14 items of the Peruvian Elementary School Mathematical Test (UMC, 2001) 

were applied to 131 students of high social-economical status. Item response vectors are available 

from authors upon request. The distribution for the scores presents a mean of 10.84, a median of 

11 and a standard deviation of 1.859. The skew and kurtosis indexes are estimated as -0.804 and 

0.449, respectively. The test presents a regular reliability index given by Cronbach´s alpha of 

0.48, and presents a mean proportion of items of 0.774, indication of being an easy test. It is 

shown that the scores present negative asymmetry in the behavior of sixth grade students for the 

mathematical test; hence item-test regression for different items does not present symmetric form. 

Although an item-test regression is not a close approximation to an item characteristic curve (Lord 

& Novick, 1968, p. 363), it may indicate a possible form for the true item characteristic curve. 

This justifies exploring SN-IRT models for this data set. This data set has been analyzed in Bazan 

et al., 2004 using a PN model. 

To illustrate the utility of SN-IRT models, SPN and SPSN models are fit and compared with the 

fitting of the PN model. The main goal is to show advantages of the proposed models that 

consider a new item parameter, which is able to extract more information from the items.  

 
Table 1.  

Comparing of the PN, SPN and SPSN models using different criterion 
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Criterion Probit-Normal
model 

Skew-probit-
Normal 
model 

Skew-probit- 
Skew normal 

 model 
Number of parameters 159  173 174 
Posterior expected deviance 1446.17 1317.28 1321.83 

 
Deviance of the posterior means 1358.13 1365.11 1363.35 

 
Effective number of parameters 88.04 -47.83 -41.52 
DIC 1534.21 1269.44 1280.32 
Expected AIC 1750.17 1663.28 1669.83 
Expected BIC 1942.21 1881.85 

1889.66 
SSR posterior mean 1853 1362 1351 

 

From the posterior expected deviance, DIC, EAIC, EBIC values shown in Table 1, we see that the 

SPN model improves the corresponding symmetric PN model and asymmetric SPSN model. This 

later model also presents better fit than that of the PN model. This result is also observed by 

considering the sum-of-squared-error (SSR) of the latent residuals (see figure 4), which SPSN 

model can be alternative for the SPN model for the data set.  In summary, the SPN model presents 

the best for the data set. Spiegelhalter et al. (2002) mentions that pD in the table can be negative 

and an explication for this fact is that it can indicate conflicting information between prior and 

data. This problem can be important in SN-IRT models when prior information is not available. 

Informative prior elicitation using historical data, as proposed by Chen, et al. (2001) and model 

sensitivity to choose of priors can be explored in subsequent studies. 
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FIGURE 4. Sum-of-squared-latent residuals (SSR) for PN, SPN and SPSN models  

 

Tables 2 and 3 illustrate the behavior of item parameter estimates for probit-normal and skew-

probit-normal models. Estimates of item discrimination and difficulty parameters for the two 

models present similar behavior as are presented in the Table 2. The two types of parameters are 

equally interpretable under both models. Item 11 is the most discriminative while item 9 is the 

least. Also, item 11 is the easiest while item 12 is the most difficult. So, the skew probit-normal 

model is a model that offers the same conclusions about difficulty and discrimination parameters 

as the probit-normal model. 

Table 3 shows estimated parameter values corresponding to the asymmetry parameter dj instead of 

the penalty parameter λj. We prefer to present inference on dj because it offers the same 

interpretation in simples scale. Figure 5 presents the histogram of the posterior distributions of 

parameter d, which indicates the presence of asymmetrical and symmetrical densities.  

It is important say that by considering the notion of effective sample size (ESS) as used in Sahu 

(2002) we find that the a parameters have best convergence. Convergence for the b parameters 
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seems less precise, an indication that a larger chain is needed. This seems also to be the case with 

parameters d and λ although in a somewhat minor degree. There is indication that better 

convergence follows with the d parametrization than with the λ parametrization. In summary, for 

the asymmetry parameter, it seems better to work with d parametrization, but big variability is 

observed.  
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FIGURE 5. Histograms of the posterior distribution for  parameter d 

 

In Table 3 it is presented differences between posterior mean for the aj and bj parameters in the 

probit-normal and skew probit-normal models. As expected, the difficulty and discrimination 

parameters in the probit-normal model and skew-probit-normal model are approximately equal 

when the asymmetry parameter is close to zero. As an estimate of penalty parameter dj it seems 



 32

more convenient to consider the posterior median instead of the posterior mean by reasons of 

asymmetry. 

Items 11, 4, and 7 are the ones that present penalty parameter estimates dj larger and negative 

(negative asymmetry on the item characteristic function), while discrimination and difficulty 

parameters differ in the two models. The posterior probability of negative values for the 

asymmetry parameter was computed for items 11, 4, and 7, resulting in the following values: 

0.732, 0.614 and 0,632, respectively, which seems to indicate that these parameters are not equal 

to zero. Hence, the assumption of a skew symmetric ICC seems adequate. 

In the special case of items 11, 4, and 7, the difference between models as consequence of the 

asymmetry parameter affects the difficulty parameter. Also observe that items 3 and 6 present 

positive penalty parameter estimates indicating that they present ICC with positive asymmetry but 

their value are not significantly different from zero, and also that the other items can be modeled 

correctly by considering a probit-normal model with symmetrical ICC.  

Item 11 says: “Luisa, Dora and Mary bought some cloth. Luisa bought half of a meter, Dora 

bought 75 centimeters and Mary bought fifty centimeters. Which ones did buy the same quantity 

of cloth?”. Item 4 says: “Pepe divides a number by 17, obtaining a quotient of 9 and a residual of 

2. Which is the number he used?”. We believe that these items penalize students with better 

knowledge while rewarding those with less knowledge. Students with better knowledge have very 

little differences on their probability of success for an item, but for students with less knowledge a 

little change on the terms used on the text of the item can produce a significant change on the 

probability of success. This type of analysis cannot be done with the probit-normal model and 

show possible advantages on psychometric interpretation of the skew models proposed.  
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As Albert & Ghosh (2000) mention, it can be hard to interpret the difficulty parameter bj 

since it is not expressible on the probability scale. An alternative measure of difficulty is the 

unconditional probability of correct response jp  (see Appendix B), which is the probability that 

a randomly chosen individual from the population obtains a correct response to the jth question 

and can be interpreted as the proportion of student in the population that will correctly answer the 

jth item. Table 4 presents the unconditional probability of correct response under the PN and SPN 

models and the observed proportion of students in the sample, which correctly answer the jth item. 

The unconditional probability is obtained using the expression in the Appendix B and is estimated 

using the posterior median for item parameters.  

 

Table 4.  

Comparison of the estimated proportion of correct response under PN and SPN with the observed 

proportion in the sample 

Item d estimated 
Proportion  
Observed  

Proportion 
Estimated 

Estimated-Observed 
 

   Under PN model Under SPN model Under PN model Under SPN model
1 -0.084 0.794 0.786 0.789 0.0075 0.0052 
2 -0.053 0.855 0.851 0.854 0.0042 0.0007 
3 0.010 0.519 0.510  0.517 0.0092 0.0022 
4 -0.175 0.931 0.918 0.923 0.0134 0.0078 
5 -0.136 0.870 0.863 0.872 0.0075 -0.0014 
6 0.027 0.366 0.361 0.361 0.0053 0.0055 
7 -0.219 0.924 0.914 0.921 0.0102 0.0026 
8 -0.108 0.878 0.860 0.870 0.0175 0.0077 
9 -0.031 0.786 0.782 0.786 0.0044 0.0004 
10 -0.084 0.863 0.854 0.861 0.0091 0.0015 
11 -0.495 0.931 0.914 0.929 0.0173 0.0021 
12 0.007 0.351 0.347 0.349 0.0036 0.0024 
13 -0.072 0.824 0.818 0.823 0.0066 0.0010 
14 -0.134 0.947 0.943 0.948 0.0040 -0.0012 
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The unconditional probability of correct responses under PN an SPN models can be considered as 

the estimated population proportion of correct responses and can be compared with the proportion 

observed proportion in the sample. The comparison of the differences (estimated-observed) with 

the penalty parameter is shown in the Figure 6.  The solid circle corresponds to differences under 

the SPN model, and the transparent circle corresponds to differences under the PN model. Note 

that the distance between the differences in the proportion of correct response under PN and SPN 

models are higher when the penalty parameter is higher as is the case of item 11. Thus, there is 

strong evidence that for some items of the data set, the SPN model is more appropriate.  

median posterior of parameter d
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FIGURE 6. Difference comparisons (estimated-observed) under PN and SPN models for the  

penalty parameter d 

 

Discussion 

This article proposes a new asymmetrical item response theory model, namely, the skew-normal 

item response theory model (SN-IRT) which considers a new asymmetric item characteristic 
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curve by considering the cumulative distribution of the standard skew-normal distribution 

(Azzalini, 1985), but also considering the standard skew-normal model for the distribution of the 

latent variable. This new IRT model is denominated SN-IRT model. This extends the work of 

Albert (1992) to fit asymmetrical IRT models and includes the symmetric normal ogive or probit-

normal model as a special case. Two data augmentation approaches are proposed by 

implementing a Bayesian estimation approach by using the MCMC methodology for simulating 

from the posterior distribution of item parameters and latent variables. In the first, MCMC 

methodology can be implemented by using the Metropolis-Hasting algorithm describes in Chib & 

Grenberg (1995). 

In the second data augmentation approach MCMC methodology can be implemented by using 

simple Gibbs Sampling algorithms. Another contribution of this article is the investigation of 

model comparisons procedures. Comparison of symmetrical and asymmetrical IRT models are 

studied by using the Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002), Expected 

AIC and expected BIC (Carlin & Louis, 2000 and Brooks, 2002). We also introduce latent 

residuals for the models and global discrepancy measures as the posterior sum of squares of the 

latent residuals, which can be used for model comparisons. 

Finally, we give some interpretation to the new item parameter proposed called penalization 

parameter in the context of a data set from a mathematical test. It is also shown that the SPN 

model seems to present the better fit for the observed data.  Although the HPD intervals in Table 3 

indicate that the penalization parameters are not different from zero, so that a PN model would be 

more adequate to fit the data, we prefer to base our conclusion on which model to choose by using 

criteria such as DIC, expected AIC and expected BIC for the comparison between estimated and 

expected proportion of correct responses. This is due to the fact that the estimates of penalization 
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parameters present large variances, perhaps consequences of too small sample size.  Extensions to 

consider a model SN-IRT multidimensional model, hierarchical SN-IRT model, SN-IRT 

multinivel model can be studied in future developments.  

Furthermore, the new skew-probit link proposed in the paper, based on the cumulative distribution 

of the standard skew-normal distribution (Azzalini, 1985), can be used in the context of binary 

and binomial regression models and extensions. Adaptations of the algorithms proposed on the 

paper for these cases are easy to be done. Other extensions of the skew probit link for ordinal 

responses as in Johnson (2003) are also to be studied in future development. 
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Table 2.  

Posterior mean, standard deviation (sd) and 90 % HPD intervals for the common parameters under 

the IRT Probit-normal and Skew-probit-normal models 

 Probit-Normal Model  Skew Probit-Normal Model 

  mean  sd median 
    HPD  
Lower 

HPD  
Upper    mean  sd median 

HPD 
Lower 

HPD 
Upper 

            
a1 0.535 0.228 0.520 0.149 0.880  0.491 0.222 0.469 0.147 0.860 
a2 0.300 0.181 0.280 0.007 0.557  0.269 0.172 0.245 0.001 0.499 
a3 0.552 0.228 0.531 0.197 0.912  0.496 0.209 0.480 0.141 0.809 
a4 0.915 0.348 0.889 0.332 1.462  0.856 0.351 0.824 0.252 1.375 
a5 0.512 0.249 0.493 0.117 0.912  0.465 0.231 0.440 0.093 0.824 
a6 0.314 0.166 0.299 0.026 0.551  0.284 0.154 0.267 0.040 0.524 
a7 0.838 0.341 0.801 0.307 1.375  0.801 0.341 0.755 0.251 1.339 
a8 0.959 0.350 0.928 0.350 1.470  0.885 0.331 0.858 0.341 1.401 
a9 0.199 0.140 0.171 0.001 0.393  0.180 0.130 0.158 0.000 0.355 
a10 0.496 0.237 0.479 0.112 0.879  0.451 0.233 0.430 0.053 0.782 
a11 1.323 0.394 1.296 0.662 1.915  1.266 0.435 1.232 0.559 1.928 
a12 0.387 0.196 0.369 0.043 0.668  0.357 0.179 0.340 0.047 0.616 
a13 0.457 0.225 0.432 0.096 0.801  0.405 0.212 0.379 0.048 0.726 
a14 0.445 0.276 0.411 0.001 0.825  0.404 0.257 0.364 0.002 0.753 
b1 -0.900 0.153 -0.895 -1.124 -0.630  -0.780 0.421 -0.817 -1.449 -0.123 
b2 -1.083 0.144 -1.080 -1.308 -0.840  -0.976 0.426 -1.043 -1.613 -0.285 
b3 -0.026 0.127 -0.028 -0.217 0.195  -0.049 0.394 -0.055 -0.691 0.567 
b4 -1.902 0.338 -1.861 -2.409 -1.374  -1.662 0.581 -1.701 -2.591 -0.690 
b5 -1.232 0.178 -1.218 -1.524 -0.952  -1.057 0.458 -1.124 -1.798 -0.337 
b6 0.373 0.121 0.371 0.181 0.570  0.328 0.392 0.347 -0.304 0.933 
b7 -1.779 0.317 -1.746 -2.267 -1.278  -1.519 0.561 -1.578 -2.397 -0.574 
b8 -1.517 0.294 -1.476 -1.953 -1.045  -1.332 0.512 -1.396 -2.060 -0.417 
b9 -0.794 0.131 -0.790 -1.010 -0.592  -0.731 0.406 -0.777 -1.330 -0.079 
b10 -1.179 0.176 -1.166 -1.467 -0.898  -1.051 0.441 -1.112 -1.709 -0.321 
b11 -2.290 0.440 -2.236 -3.025 -1.663  -1.829 0.719 -1.862 -2.945 -0.586 
b12 0.424 0.123 0.418 0.226 0.627  0.388 0.386 0.405 -0.199 1.021 
b13 -0.995 0.156 -0.988 -1.230 -0.740  -0.884 0.438 -0.934 -1.526 -0.174 
b14 -1.726 0.239 -1.705 -2.111 -1.388  -1.522 0.502 -1.612 -2.306 -0.736 
            
u mean 0.045 0.087 0.045 -0.105 0.1819  0.036 0.087 0.039 -0.109 0.178 
u sd 0.933 0.062 0.933 0.872 1.039  0.931 0.060 0.930 0.828 1.027 
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Table 3.  

Posterior mean, sd and 90 % HPD intervals for the d parameters under the fitted skew probit-

normal model 

 Posterior Statistics 
Difference between PN 

and SPN models 

  mean  sd median 
Lower 
HPD 

Upper 
HPD 

Mean difference 
in a 

Mean difference 
in b 

      
d1 -0.058 0.486 -0.084 -0.772 0.823 0.044 -0.120 
d2 -0.021 0.499 -0.053 -0.787 0.843 0.031 -0.108 
d3 0.018 0.489 0.010 -0.802 0.781 0.056 0.023 
d4 -0.110 0.525 -0.175 -0.892 0.788 0.059 -0.240 
d5 -0.089 0.488 -0.136 -0.896 0.665 0.046 -0.175 
d6 0.006 0.488 0.027 -0.849 0.730 0.030 0.044 
d7 -0.145 0.516 -0.219 -0.975 0.640 0.037 -0.260 
d8 -0.077 0.506 -0.108 -0.854 0.767 0.074 -0.185 
d9 -0.002 0.501 -0.031 -0.850 0.778 0.019 -0.064 
d10 -0.048 0.488 -0.084 -0.850 0.740 0.044 -0.128 
d11 -0.334 0.554 -0.495 -1.000 0.571 0.057 -0.461 
d12 -0.006 0.484 0.007 -0.737 0.826 0.031 0.036 
d13 -0.028 0.510 -0.072 -0.834 0.830 0.052 -0.111 
d14 -0.074 0.505 -0.134 -0.864 0.741 0.042 -0.204 
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Appendix A 

 
The skew-normal distribution 

As considered in Azzalini (1985), a random variable X follows a skew-normal distribution with 

location parameter µ and scale parameter σ2, if the density function of X is given by  
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 where φ(.) and Φ(.) denote, respectively, the density and distribution function of the standard 

normal distribution, with the notation X ~ SN(µ,σ2¸ λ) used in this paper. The density above is 

denoted by ),,;( 2 λσµφ xSN . Note that if λ = 0, the density of X above reduces to the density of 

the N(µ,σ2 ). In the special case of µ = 0 and σ2 = 1,  which we denote as X ~ SN(λ), it is called 

the standard skew-normal distribution. 

The random variable Z = (X − µ)/σ is distributed according to the standard skew-normal 

distribution with density function given by )()(2)( zzzf Z λφ Φ=  represented by φSN(z; λ). The 

cumulative distribution function (cdf) of Z, denoted by ΦSN(z; λ), is: 
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where straightforward algebraic manipulations yield the expression on the right with  
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λ
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=d , 1<d  and Φ2(.) denotes the distribution function of the bivariate standard normal 

distribution with mean vector 0=(0,0)T  and correlation matrix Ω= ⎟⎟
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. For simplicity, we 

denote 2 ( )ΩΦ ,,)0,(2 0Tz  by 2 ( )dz T −Φ ,)0,(2 . This result indicates that the cdf of the skew-normal 
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distribution evaluated at a point z can also be obtained by considering the bivariate standard 

normal cumulative distribution with mean vector 0=(0,0)T   and correlation coefficient −d 

evaluated at the point (z, 0). This result is important since several computational algorithms are 

available for computing integrals related to the cumulative distribution of the bivariate normal 

distribution. Another algorithm for the cdf of skew-normal distribution based in the use Owen´s 

function (Azzalini, 1985, Dalla Valle, 2004) is available for R and Matlab program in 

http://tango.stat.unipd.it/SN/  

Note that if λ=0, then );( λzSNΦ =Φ(z), the cdf of standard normal distribution. Some important 

properties of the skew-normal distribution are the following (see Azzalini 1985, Henze,1986) 

1. If X  ~  SN(µ, σ2, λ) , 
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2. If  Z ~ SN(λ), the asymmetry and kurtosis indexes are given by 
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ZEπκ ,  implying that  

–0.9953<γ <0.9953 and 0<κ<0.8692 ; 

3. If Z ~ SN(λ), it follows that − Z is SN(-λ) ; 

4. The density of Z is strongly unimodal, i.e. logφ(z; λ) is a concave function of  z ; 

5.   1 − Φ(z ;−λ) = Φ(−z ; λ) and Φ(z; 1) = Φ2(z) ; 

6.  supZ | Φ(z) − Φ(z;λ)| = arctan |λ| /π, 

7.  An important stochastic representation (Henze, 1986) states that, if V ~ HN(0, 1) the standard 

half normal distribution (see, Johnson et al. 1994) and W~N(0, 1) are independent random 

variables then, the marginal distribution of Z = dV + (1 − d2)1/2W, is SN(λ), with 
21 d

d
−

=λ .  
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8. Considering the stochastic representation in Property 7, the conditional distribution Z|V=v is a 

normal distribution with mean dv and variance 1 −d2, i.e. Z|V=v ~ N(dv, 1 −d2). This represents 

an important hierarchical representation of the skew-normal distribution similar to the one derived 

for the Student-t distribution. 

 

Remark 1. By applying the properties of the skew-normal distribution and using variable 

transformation it follows that, if Z ~SN(µ, σ2,λ), then Zs = aZ + b ~ SN(aµ + b, a2σ2, sign(a)λ). 
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Appendix B 

Unconditional Probability of correct response under SN-IRT models 

The following property of the SN-IRT family its a generalizations with respect to the usual 

property for symmetric probit-normal models. 

 

Property 1. Consider the skew-probit skew-normal (SPSN)-IRT model with item parameters 

),( jjj ba=η  and jd  and denoting the conditional probability of correct response with a latent 

variable u, as  pij = ),|1( jiij uYP η= = pj(u) , then, the unconditional probability of correct 

response for the item j is 
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Proof. The proof uses the following property of the normal distribution given by Liseo & 

Loperfido (2003) that is useful for computations with the skew-normal distribution. If Z ~ Nk(µ1, 

Σ), u is an  m-dimensional vector and A a full rank matrix, with m≤k, then,   

[ ] ),;(),;( 122
T

mmZ AAAuAZuE Σ+Ω−Φ=Ω+Φ µµµ . In particular, if Z ~ N(0, 1), it follows 

that ))(( khZE +Φ =  )
1

(
2h

k

+
Φ  (see Azzalini, 1985). 

Similar arguments as in the proof given in Albert (1992) to the case of the usual symmetric probit-

normal model can be used. 
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Two special cases are of interest. If we consider asymmetry only for the ICCs (κ = 0), the model 

becomes the skew-probit normal (SPN) IRT model, then, 
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On the other hand, considering only asymmetry for the latent variable, (i.e jd = 0) , the models 

become the probit skew-normal (PSN) IRT model, and we obtain 
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The two expressions above present generalizations with respect to the usual symmetric probit-

normal model because if there is no asymmetry in the item characteristics curve and in the latent 

variable we obtain that the conditional probability of obtaining a correct response for item j is 
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p  as presented in Albert (1992). This is the probability that a randomly chosen 

individual from the population obtains a correct response for the item j (j = 1, . . . , I).  

 

 


