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Abstract

We introduce a generalized skew probit (gsp) class of links for the modeling of
binary regression giving some properties and conditions for the existence of the max-
imum likelihood estimator and of the posterior distributions of the parameters of the
model when improper uniform priors are established. As shown, asymmetric links
already proposed in the literature are special cases of the general family of links pro-
posed. A Bayesian inference approach using MCMC is developed and implementations
of the approach are facilitated by considering the augmented likelihood proposed. Sev-
eral models comparison criteria are introduced and confirm that the gsp class are more
adequate for the biological data sets analyzed than other asymmetrical and symmet-
rical links in the literature. Moreover, extensions of the methods developed in this
paper for dichotomous responses to ordinal response data and mixed models for binary
response data are indicated.
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1 Introduction

Data are considered dichotomous when each observed response falls into one of two possi-
ble categories, such as success or failure, positive or negative, correct or incorrect. These
kind of data are common in several areas of applications such as, the social, medical, agri-
cultural, genetics and behavioral sciences. Typically, binary regression using probit and
logit links, deals with dichotomous data as a response variable and explore its relationship
with a set of other explanatory variables combined as a linear predictor. However, Nagler
(1994), argues that, with both, logit and probit links, it is assumed that individuals with
a .5 probability of success are more sensitive to changes in the independent variables, e.g.,
a 1 unit change in X will have a greater effect on someone who has a .5 probability of
success than it will have on someone with a .3 or .7 probability of success. Nagler (1994)
argues that this isn’t necessarily the case, e.g., somebody with a .4 probability of success
may be more affected by a 1 unit change in X than somebody who has a .5 probability of
success. If so, the distribution is “skewed” - things aren’t symmetric about .5 and then
asymmetrical links are justified.

The probability of success is obtained by considering a cumulative distribution function
(cdf) evaluated at the linear predictor and typically, the cdf´s used are the logistic (logit
model) and the standard normal (probit model) distribution functions. But Chen et al.
(1999) also argues that when the probability of a given binary response approaches 0 at a
different rate than it approaches 1, symmetric links may be inadequate to fit binary data
and it is necessary consider asymmetric links.

Binary regression is an important special case of the generalized linear models (GLM)
for which Bayesian inference is well documented. This paper is devoted to propose a new
flexible parametric family of asymmetric links to the probability of success. In particular,
we present an unified approach for skew probit links presented early in the literature,
by considering a generalized skew probit link for binary regression. Chen et al. (1999)
and Bazán et al. (2005) skew probit links and the usual probit link follow as special
cases. Further, others skew-probit links not yet in the literature can be derived from this
approach.

The skew link proposed here introduces a parameter that controls the rate of increasing
(or decreasing) of the probability of success (failure) of the binary response and is based
on the cdf of the skew normal distribution given by Azzalini (1985). For a review about
the skew normal distribution see Dalla Valle (2004). Some properties used in this paper
are presented in the Appendix.

The asymmetric binary regression model proposed here is characterized by: i) the
probability of success is obtained by considering a cumulative distribution function (cdf)
evaluated at the linear predictor and ii) an asymmetry parameter associated with these
cdfs is introduced independently of the linear predictor and, in addition, iii) a latent
linear structure is not necessary for the link formulation. However, as we will see later,
such structure will be considered for computational purposes.

Another aim of this paper is to show that the model proposed can be easily imple-
mented using the Bayesian software WinBugs. Further, a discussion on Bayesian criteria
for model comparison is also conducted in two data set.

The paper is organized as follows. Section 2 revise some of the symmetric and asym-
metric links in the literature at the present time. To define a general class of skew probit
links in Section 4, we give a special representation for the cdf of the skew normal distribu-
tion in Section 3. In Section 5, inference aspects are discussed, considering results on the
existence of maximum likelihood estimators and propriety of the posterior distributions
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when improper uniform priors are used. A data augmented likelihood is considered in
Section 6 and in Section 7 a MCMC Bayesian estimation approach is developed. In Sec-
tion 8, two applications to a real data set are presented, including a discussion on models
comparison and variable selection criteria. Finally extensions and discussion of the gsp
class introduced is showed in Section 9.

2 Symmetric and Asymmetric links

We consider y = (y1, y2, . . . , yn)′ a n × 1 vector of n independent dichotomous random
variables, assuming that yi = 1 with probability pi and yi = 0 with probability 1− pi, and
xi = (xi1, . . . , xin)′ a k × 1 vector of covariates, where xi1 may equals 1, corresponding
to an intercept, i = 1, . . . , n. Moreover, X denotes the n× k design matrix with rows x′i,
and β = (β1, . . . , βk)′ is a k× 1 vector of regression coefficients. Binary regression models
assume that

pi = F (ηi(β)) = F (x′
iβ), i = 1, . . . , n, (1)

where F (.) denotes a cumulative distribution function (cdf). The inverse of the function
F namely F−1, is typically called link function and ηi = x′iβ, the linear predictor. The
graphic considering pi as a function of ηi is called response curve. When F is a cdf of a
symmetric distribution, the response curve has symmetric form about 0.5. Examples are
obtained when F is in the class of the elliptical distributions as, for example, standard
normal, logistic, Student-t, double exponential and Cauchy distributions.

In the literature several asymmetric links have been considered, among others, by
Prentice (1976), Guerrero and Johnson (1982), Stukel (1988), Czado and Santner (1992),
Chen et al. (1999), Basu and Mukhopadhyay (2000) and Haro-López,et al. (2000). More-
over, examples are listed in different textbooks (see, for example, Collet, 2003) reporting
situations where an asymmetric link may be more appropriate than a symmetric one.

There are several ways to obtain asymmetric links by considering the model structure
defined in (1). The most important ones follow by:
(a) taking F as the cdf of an asymmetric distribution; (b) considering a modification of the
linear predictor ηi and (c) considering F in a very general parametric class of probability
distributions, for example, in a class of mixtures of distributions.

A very popular example of situation (a) is the complementary log-log link, where the
cdf of the Gumbel distribution is considered, but the cdf of the Weibull and log-normal
distributions can also be considered. In these cases, the cdf is completely specified and it
does not depend of any unknown parameter and no relationship between them and the
usual symmetric links are established. Other models are obtained when considering the
following cdfs:

F (ηi) = 1− (1 + eηi)−λ and F (ηi) = (1 + e−ηi)−λ, λ > 0.

In spite of the fact that there is no well agreed name for the first cdf, Achen (2002)
has named it as the scobit distribution. The second cdf corresponds to the Burr type
II distribution. Corresponding links using these distributions were proposed in Prentice
(1976) and were popularized in the statistical literature by Aranda-Ordaz (1981) and in
the economic literature by Nagler (1994) and Achen (2002). These links are skewed logit
and are here termed scobit and power logit, respectively, and include the logit link as
special case by considering the parameter λ = 1.
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Case (b) keeps F as a symmetric distribution and considers a modification of the linear
predictor ηi by m(ηi, λ), where m(.) is a nonlinear and continuous function, and λ is the
parameter that controls asymmetry. Guerrero and Johnson (1982), and Stukel (1988) use
the logistic distribution and Czado (1994) use the standard normal distribution. Hence, pi

is obtained considering pi = F (m(ηi, λ)) for some specification range for ηi. For example,
in Stukel’s model (Stukel, 1988), the specification of m(ηi, λ) is different for ηi ≥ 0 than
it is for ηi ≤ 0. That is, m(ηi, λ) is a partitioned function for different ranges of ηi and λ.
For ηi ≥ 0, it is considered that

m(ηi, λ) =

{ λ−1(exp(ληi)− 1), λ > 0;
η, λ = 0;

−λ−1log(1− ληi), λ < 0,

and for ηi ≤ 0 it is considered that

m(ηi, λ) =

{ −λ−1(exp(−ληi)− 1), λ > 0
η, λ = 0

λ−1log(1 + ληi), λ < 0.

Another possibility in case (b), is obtained when the linear predictor is replaced by a
polynomial expression, usually quadratic or cubic (see, for example, Collet, 2003).

An example of case (c) is given when F is in the class of the elliptical scale mixtures
of distributions given by F = {F (.) =

∫
[0,∞] H(.|ν)dG(ν)}, where G is a cdf on [0,∞] and

H is an elliptical distribution (see Basu and Mukhopadhyay, 2000, Haro-López, et al.,
2000). Another recent formulation, using an asymmetric probit link appears in Chen et al.
(1999), considering a class of mixtures of normal distributions, where the mixture measure
is the half normal distribution. The half normal distribution is denoted by HN(0, 1) and
has probability density function (pdf) given by g(x) = 2φ(x), x > 0, where φ(.) is the
corresponding pdf of the normal distribution.

Using auxiliary latent variables the skew probit model proposed by Chen et al. (1999),
from now on denoted by CDS sp, is given by

yi =
{

1, si > 0
0, si ≤ 0,

(2)

where
si = ηi + λvi + wi, (3)

with vi independent of wi,

vi ∼ HN(0, 1) and wi ∼ N(0, 1). (4)

Therefore,

pi =
∫ ∞

0
Φ(ηi + λvi)g(vi)dvi, (5)

where Φ(.) denotes the cdf of a standard normal distribution and g(.) is the HN pdf.
Expression (5) follows from the stochastic representation of the skew normal distribu-

tion given by Chen et al. (1999) and Branco and Dey (2002), which is a particular case
of the asymmetric model in Sahu et al. (2003) (see expression in Table 1), where λ ∈ R is
a skewness parameter.
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Another skew-probit link was proposed by Bazán et al. (2005) considering F as a cdf
of the standard skew-normal distribution given in Azzalini (1985). Without using latent
variable structure, they consider

pi = Fλ(ηi) = 2Φ2

(( ηi

0

)
;
( 0

0

)
,
( 1 −δ
−δ 1

))
, (6)

where Fλ(.) denotes the cdf of the standard skew-normal distribution with asymmetry
parameter λ ∈ R, and Φ2(.) denoting the cdf of the bivariate standard normal distribution
with correlation coefficient −δ, where δ = λ√

1+λ2
∈ [−1, 1]. The latter skew probit link has

been used in the item response theory (IRT) context by Bazán et al. (2005) and, we denote
this model by BBB sp. We can also formulate the model in (6) using a latent structure as
in (3-4) by considering the stochastic representation of the skew normal distribution to si

given by Henze (1986) (see expression in Table 1).
A common aspect of the CDS sp and BBB sp links is that the asymmetry parameter

is associated with F (.) and is independent of the linear predictor. To emphasize this, we
write Fλ(.) instead of F (.). The main difference is that with BBB sp, it is not necessary to
consider a latent linear structure representation as in CDS sp, but it is sufficient specifying
pi as a cdf of an asymmetric distribution and an analytical expression to (5) can be obtained
as in (6). However, as we show in the next section, both links are indeed a special case of
a more general class of links.

3 The cumulative density function of the skew normal dis-
tribution

A random variable R follows a skew-normal distribution (Dalla Valle, 2004), with para-
meter θ = (µ, σ2, λ) where µ ∈ R is a location parameter and σ2 > 0 is a scale parameter
and λ ∈ R is an asymmetry parameter, if the probability density function (pdf) of R is
given by

fθ(r) =
2
σ

φ

(
r − µ

σ

)
Φ

(
λ

r − µ

σ

)
, (7)

where φ(.) and Φ(.) denote, respectively, the density and distribution functions of the
standard normal distribution. The notation considered is R ∼ SN(θ) where θ = (µ, σ2, λ).
If λ = 0, the density of R in (7) reduces to the density of the N(µ, σ2). The special case
of µ = 0 and σ2 = 1 is called the standard skew-normal distribution as given by Azzalini
(1985) with the following pdf:

fA
λ (s) = 2φ(s)Φ(λs).

In this case we write S ∼ SNA(λ), denoting, the standard Azzalini´s skew normal distri-
bution. Moreover, in the special case of µ = 0 and σ2 = 1 + λ2, the pdf of R in (7) is the
standard skew normal given in Chen et al. (1999) and Branco and Dey (2002), which is
a particular case of the skew normal distribution due to Sahu et al. (2003). In this case,
we write S ∼ SNS(λ) to denote this distribution, with the corresponding pdf:

fS
λ (s) =

2√
1 + λ2

φ

(
s√

1 + λ2

)
Φ

(
λ

s√
1 + λ2

)
.

To define a general class of skew probit links we give next a special representation for
the cdf of the skew normal distribution. See the Appendix for the notation introduced,
some properties and the proofs of the results presented next.
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Proposition 1. Let R ∼ SN(θ). Then, the cdf of R can be written as

Fθ(r) =
∫ ∞

0
g(v)Φ

(r − µ− σδv

σ
√

1− δ2

)
dv =

∫ ∞

0
g(v)Φ

(r − µ

σ

√
1 + λ2 − λv

)
dv. (8)

An alternative representation for the cumulative distribution function is provided next.

Proposition 2. The distribution function of the SN(µ, σ2, λ) can also be written as

Fθ(r) = 2Φ2

(
x; µ,Σ

)
, (9)

where x = (r, 0), and Φ2(.) denote the cdf of the bivariate normal distribution, with para-

meters µ = (µ, 0)′ and Σ =
( σ2 −δ
−δ 1

)
, and −δ is the correlation coefficient.

The representation of the skew normal cdf in Proposition 1 is similar to a result given
in Chen et al. (1999) and it will be used to prove the propositions in Section 5. The
representation of the skew normal cdf in Proposition 2 is similar to a result given in Bazán
et al. (2005) and it indicates that the distribution of the skew-normal distribution eval-
uated at a point r is also obtained by considering a bivariate normal distribution with
mean vector µ and variance-covariance matrix Σ evaluated at the point (r, 0). This result
is important since several efficient computational algorithms are available for computing
integrals related to the bivariate normal distribution. Another algorithm for evaluating
the cdf of the skew normal distribution is based in the use of Owen´s function (Azzalini,
1985; Dalla Valle, 2004) and is available for R and Matlab programs. Additionally, the
distribution of R is obtained considering (U,W ) ∼ N2 (µ,Σ) with µ and Σ defined above
and defining R = U |W > 0.

As a direct consequence of the above result, we have

Corollary 1. Corresponding to the standard Azzalini´s skew normal distribution, we have
that

FA
λ (s) =

∫ ∞

0
g(v)Φ

(
s
√

1 + λ2 − λv
)
dv = 2Φ2

(( s
0

)
;
( 0

0

)
,
( 1 −δ
−δ 1

))
.

Corresponding to the standard Sahu´s et al. skew normal distribution, we have that

FS
λ (s) =

∫ ∞

0
g(v)Φ

(
s− λv

)
dv = 2Φ2

(( s
0

)
;
( 0

0

)
,
( 1

1−δ2 −δ

−δ 1

))
.

By considering Properties 1, 2 and 3 in the Appendix and recalling that the skewness
index γ is given by γ = µ3

2 = E( R−E[R]

V ar[R]1/2 )3, we have some interesting expressions for
Azzalini’s and Sahu´s et al. (2003) standard skew normal distributions in Table 1.

For Azzalini´s skew normal distribution we have that E[S] ∈ [−0.80, 0.80], V ar[S] ∈
[0.36, 1] and γA ∈ [−0.995, 0.995] but for Sahu´s et al. skew normal distribution we have
that E[S] ∈ [−0.80|λ|, 0.80|λ|], V ar[S] ∈ [1, 1 + 0.36λ2] and γ ∈ [−0.843, 0.843]. Then,
E[S] and V ar[S] take lower values in the SNA case. The stochastic representation for
Azzalini´s skew normal distribution is known as Henze’s representation and a similar
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Table 1: Comparisons of Azzalini’s and Sahu´s et al. standard skew normal distributions

S ∼ SNS(λ) S ∼ SNA(λ)

MS(t) 2exp
(

1
2 t2

)
Φ(δt) 2exp

(
1
2(1 + λ2)t2

)
Φ(λt)

E[S] ( 2
π )1/2λ ( 2

π )1/2δ

V ar[S] 1 + (1− 2
π )λ2 1− 2

π δ2

γ ( 2
π )3/2(1− 2

π )sig(λ) λ3

(1+(1− 2
π

)λ2)3/2 ( 2
π )3/2(2− π

2 )sig(λ) λ3

(1+(1− 2
π

)λ2)3/2

( 2
π )3/2(1− 2

π )sig(δ) δ3

(1− 2
π

δ2)3/2 ( 2
π )3/2(2− π

2 )sig(δ) δ3

(1− 2
π

δ2)3/2

Stochastical S = δV + (1− δ2)1/2W ∼ SNA(λ) S = λV + W ∼ SNS(λ)
representation S|V = v ∼ N(δv, 1− δ2) S|V = v ∼ N(λv, 1)

v ∼ HN(0, 1) v ∼ HN(0, 1)

sig(.) is a signal function which equals 1 when its argument is positive and equals −1
otherwise.

representation for Sahu´s et al. skew normal distribution is due to Chen et al. (1999)
and Branco and Dey (2002). In addition, it is possible to establish a relationship between
Azzalini´s and Sahu´s et al. standard skew normal distributions by considering that given
S ∼ SNA(λ) then S∗ =

√
1 + λ2S ∼ SNS(λ).

4 The generalized skew probit model

From the results in the previous section, a generalized skew probit (gsp) class of models
is obtained considering

pi = Fθ(ηi) = Fθ(x′
iβ), i = 1, . . . , n, (10)

where Fθ(.) is the cdf of the skew normal distribution given in (8) or (9) with parameter
vector θ = (µ, σ2, λ).

Corollary 2. Some special links of the gsp class follows from (10) and are as given in the
following:

• If θ = ( 0, 1, 0) then the probit link follows.

• If θ = ( 0, 1 + λ2,−λ) then the CDS sp link given in (5) follows.

• If θ = ( 0, 1, λ) then the BBB sp link given in (6) follows.
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Notice also that a multitude of different skew probit links can be formulated by consid-
ering other values for µ and σ2 in (10). The more general one follows by considering the
parameters µ and σ2 to be estimated from the data and is named the complete sp link.
Another interesting skew probit link can be obtained by considering the skew normal dis-
tribution with µ = −

√
2δ√

π−2δ2
and σ2 = π

π−2δ2 . In this case it follows, by considering in
(7) Property 2 in the Appendix, that E(R) = 0 and V (R) = 1. This link is named the
standard skew probit link, which is denoted as standard sp link.

The formulation of the gsp class assumptions essentially imply that the probit model
is nested in any of the skew-probit models described above. Figure 1 depicts different
probability curves of the CDS sp and BBS sp models by using different values for ηi.
Note that the CDS sp link presents probabilities of success that grow slower than the ones
corresponding to the BBB sp link. Further, CDS sp seems to be more adequate if the
range of ηi is wider.
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Figure 1: Probability curves for λ = −5,−2, 0, 2, 5 in CDS and BBB sp models considering
different ranges for ηi

The likelihood function for the gsp class of models is given by

L(β, θ|y, X) =
n∏

i=1

[Fθ( ηi)]yi [1− Fθ( ηi)]1−yi , (11)

where ηi is the linear predictor, X is the design matrix as defined in Section 1 and Fθ(ηi)
is given in (10).

Another version of the likelihood function for the gsp class of models, similar to the
one given by Chen et al. (1999) is obtained by considering augmented data. Using
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vi ∼ HN(0, 1), i = 1, . . . , n, as auxiliary latent variables and denoting η∗i = ηi−µ
σ with (8),

we obtain

L(β, θ|y, X, v) =
n∏

i=1

[
Φ(η∗i

√
1 + λ2 − λvi)

]yi
[
1− Φ(η∗i

√
1 + λ2 − λvi)

]1−yi

g(vi), (12)

leading to the marginal likelihood function for the gsp class

L(β, θ|y,X) =
n∏

i=1

∫ ∞

0

[
Φ(η∗i

√
1 + λ2 − λvi)

]yi
[
1− Φ(η∗i )

√
1 + λ2 − λvi)

]1−yi

g(vi)dvi.

(13)
To obtain the versions of the likelihood function for the BBB and CDS sp links in (11)
and (13), is only necessary to consider the corresponding values of θ in Corollary 2 to
Fθ(ηi), i = 1, . . . , n.

5 Inference

Note that in the gsp class, the parameters θ and β have quite different meaning. Whereas
θ is a vector of structural parameters associated with the choice of the link function, the
parameter β is a vector of parameters inherent to the observed data and not depending
on the model choice (for a discussion see Taylor and Siqueira). By considering this fact,
two scenarios can be considered. The first scenario is one in which β and θ are estimated;
in the second scenario only β is allowed to vary and θ is fixed at its “true” value θ0. As
in Taylor and Siqueira (1996), we shall refer to these two scenarios as the unconditional
and conditional ones, respectively.

Inference in the conditional scenario is easier to be implemented from both maximum
likelihood (ML) and Bayesian approaches. However, conditions shall be imposed under
the design matrix for the existence of the ML estimators and the posterior distribution
of β under improper uniform priors. The following proposition is a direct consequence of
results in Chen and Shao (2000).

Proposition 3. By considering the conditional approach for the gsp class, that is, θ is
known or fixed and β is the only parameter of interest, and letting ti = 1 if yi = 0, and
ti = −1 if y = 1, X the n × k known design matrix with rows x′i and define X∗ as the
matrix with rows tixi

′. Then, under the conditions
(C1) X is of full rank;
(C2) There exists a positive vector a = (a1, . . . , an)′ such that X∗′a = 0,
it follows that

• for an improper uniform prior for β, i.e., π(β) ∝ 1, the posterior distribution of β
is proper, i.e.,

∫
Rk L(β|y, X, θ)dβ < ∞;

• the maximum likelihood estimate (MLE) of β exists.

In the unconditional approach, computing the ML estimators using the versions of
the likelihood functions given in Section 4 is not simple and is necessary to develop new
conditions for the existence of the ML estimators. Additionally, we study the propriety
of the posterior distribution under improper uniform priors for β and λ but considering
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proper priors for µ and σ2. These scenarios consider independence between the priors,
such that

π(β, θ) = π(β)π(θ), where π(θ) = π(λ)π(µ)π(σ2). (14)

Proposition 4. Consider the unconditional approach for the generalized skew probit link,
that is, θ and β are the parameters of interest, and let S0 = {i : yi = 0}, S1 = {j : yj = 1},
m0 = card(S0), m1 = card(S1) and X0 and X1 are the matrices with rows x′i, i ∈ S0 and
x′j, j ∈ S1. Then, the conditions
(C1’) X0 and X1 are of full rank;
(C2’) There exists positive vectors a0 = (a01, . . . , am0)

′ ∈ Rm0 and a1 = (a11, . . . , a1m1)
′ ∈

Rm1 such that X ′
0a0 = 0 and X ′

1a1 = 0,
imply that

• for the prior π(β, λ) ∝ 1, and π(µ) and π(σ2) being proper priors, the joint posterior
distribution of (β, θ), where θ = (µ, σ2, λ), is proper, i.e.,

∫ ∞

0

∫ ∞

−∞
L(µ, σ2|y,X)π(µ)π(σ2)dµdσ2 < ∞

where L(µ, σ2|y, X) =
∫∞
−∞

∫
Rk L(β, θ|y, X)dβdλ;

• the maximum likelihood estimate (MLE) of β exists.

6 Augmented Likelihoods

In this section we present two complete-data likelihood functions for the gsp class model,
so that we start with an important alternative representation for the gsp model.

Proposition 5. The gsp model, as defined before, is equivalent to considering that

yi = I(si > 0) =
{

1, si > 0;
0, si ≤ 0,

, i = 1, . . . , n (15)

where si ∼ SN(θ), with θ = (ηi − µ , σ2, −λ), and I(.) is the usual indicator function.

The latent variables si´s are introduced to avoid working with Bernoulli type likeli-
hoods and this representation shows a latent linear structure which produces an equivalent
model with the gsp class. Furthermore, notice that the asymmetry parameter with the
auxiliary latent variable is the negative of the value of the asymmetry parameter specified
in (10).
Therefore, the first complete-data likelihood function for the gsp class is given by

L(β, θ|s, y) =
n∏

i=1

fθ(si)p(yi | si), (16)

where p(yi | si) = I(si, yi) = I(si > 0)I(yi = 1) + I(si ≤ 0)I(yi = 0), i = 1, . . . , n. When
µ = ηi, σ2 = 1 and λ = 0, the corresponding result in Albert and Chib (1993) follows the
probit link.

An alternative data augmentation approach for the gsp class follows by considering

si = ηi + ei, ei ∼ SN(θ), (17)
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that is, ei is the equation error, and by considering the stochastic representation given in
the Property 3 of the Appendix, we have that

ei = −µ + σ(−δvi − (1− δ2)wi), i = 1, . . . , n (18)

where vi ∼ HN(0, 1) and wi ∼ N(0, 1). It follows that the conditional distribution ei|vi

is a normal distribution with mean −σδvi − µ and variance (1− δ2)σ2 and then we have
that s∗i

.= si|vi ∼ N(ηi − µ − σδvi, (1 − δ2)σ2). According to this result, simulation of si

in the linear structure (17) can be performed in two steps. First, simulate vi ∼ HN(0, 1)
and then simulate s∗i = si|vi ∼ N(ηi − µ− σδvi, (1− δ2)σ2).
By considering these results, the second complete-data likelihood function for the gsp class
is given by

L(β, θ|s∗, v, y) =
n∏

i=1

φ(s∗i )g(vi)p(yi | si), (19)

where φ(.) is the pdf of the normal distribution. The density p(yi | si) can be substi-
tuted for the corresponding MCMC estimated version p(yi | si∗) because I(Si, yi) implies
I(Si∗ , yi).

Note that the errors ei are independent and are ”latent data’ residuals (Albert and
Chib, 1995) when considering ei = si − ηi which is estimated using the generated data.
They can be used for model checking. To understand how the observations yi change the
distribution of these residuals, consider the posterior distribution of ei conditional on β,
θ, si and vi, that is, e∗i = ei|β, θ, yi, si, vi.

7 MCMC Bayesian estimation

In the context of a Bayesian analysis, it is required to specify prior distributions for (β, θ).
By considering the results in Section 5, and assuming independent priors as given in (14),
we can use for β, the typical priors considered in the probit model (see, for example,
Zellner and Rossi, 1984), including a normal prior (βj ∼ N(µβj , σ

2
βj

)) or the uniform prior
(π(β) = 1). Jeffreys priors, as has been considered in Ibrahim and Laud (1991), can also
be considered.

Since we consider π(θ) = π(µ)π(σ2)π(λ), it is possible to consider for µ and σ2 priors
usually considered for the normal model, such as, µ ∼ N(µ0, τ

2
0 ) and σ2 ∼ Inv − χ2(ω, κ)

the scaled inverse-chi-square distribution with ω > 0, s degrees of freedom and scale
parameter κ > 0. We can also work with the precision defined as 1/σ2, in which case the
Gamma(ω, κ) prior distribution can be specified.

Finally, for the λ parameter is possible to use a non-informative prior or a Student-t
prior. When the model is parameterized using λ, it is called the “lambda parameteri-
zation” but when we can consider the gsp class in terms of δ, we call it as the “delta
parameterization” and a non informative prior follows by considering that δ ∼ U(−1, 1)
or, equivalently, λ ∼ T (0, 0.5, 2), where T (a, b, ν) denotes the Student-t distribution with
location a, scale b and ν degrees of freedom, (Bazán, et al., 2005).

Note that the uniform prior in the “delta parameterization” is non informative but
proper, however, the Student-t prior in the “lambda parameterization” is informative. By
considering this fact, an invariant non informative prior that can be used for λ is the
Jefrey´s prior derived in Liseo and Loperfido (2005).

Hence, to any priors indicated above, by considering the results in Propositions 3
and 4, it is possible to obtain proper posterior distributions and implement a Bayesian
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estimation procedure using the likelihood function in (11) or (13) and the prior distribution
in (14). However, such an approach is complicated since the integrals involved to obtain
the marginal posterior distributions are difficult to deal with. Two approaches based on
data augmentation as considered in Albert and Chib (1993) were introduced in Section
6. The approaches given in (16) and (19) allow the implementation of MCMC methods
which simplify efficient sampling from the marginal posterior distributions.

By considering the first complete-data likelihood function in (16) and the latent struc-
ture in (15), the full conditionals for the gsp class, to implement Bayesian inference using
MCMC can be obtained as in Albert and Chib (1993). However, some of the full condi-
tionals can not be directly sampled from, requiring more complex algorithms such as the
Metropolis-Hastings. To overcome the difficulties described above we can use the second
complete-data likelihood function in (19).
In the remainder of this section we develop a computational procedure for the gsp class
based in this second augmented likelihood function. The hierarchical structure specifica-
tion for the delta parameterization can be obtained by considering:

S∗i |vi xi, yi, β, µ, σ2, δ ∼ N
(
ηi − µ− σδvi , (1− δ2)σ2

)
I(S∗i , yi),

Vi ∼ HN(0, 1),

β ∼ π(β),

µ ∼ π(µ),

σ2 ∼ π(σ2),

and
δ ∼ π(δ).

where π(β), π(µ), π(σ2) and π(δ) can be taken of the distributions proposed above. For
the hierarchical structure specification for the lambda parameterization it is only necessary
to specify prior distributions for λ and then use the transformation δ = λ√

1+λ2
.

The above hierarchical structure can be easily implemented in the WinBugs software.
If µ and σ2 are considered to be estimated, a general probit-normal model is obtained, but
when considering the CDS sp and BBB sp links, the fourth and fifth lines in the hierarchy
are eliminated (in the CDS sp link the fifth line is eliminated since (σ2 = 1+λ2)). Further,
notice that when δ = 0 or λ = 0, the hierarchical structure of the augmented likelihood
corresponding to the probit-normal model follows by eliminating additionally the sixth
line in the hierarchy.

8 Applications

We illustrate the Bayesian approaches developed in this paper for the gsp class using two
data sets from the literature.

8.1 Beetles dataset

The beetle mortality data set (Collet, 2003) records the number of adult flour beetles
killed after five hours of exposure to gaseous carbon disulphide at various concentrations
levels. It is established that the log of the concentration differences of the poison explain
the proportion of adult flour beetles killed and a binary regression model is adequate
for analyzing the data set. This well-known data was also analyzed among others by
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Prentice (1976), Czado (1994) and Stukel (1988) concluding that an asymmetric link is
more convenient and significantly improves symmetric links such as the logit and probit
links.

In order to illustrate the usefulness of the links proposed, we performed comparisons
between gsp class links, in particular complete, CDS, BBB, standard sp and probit links
with several links in the literature. We compare with cloglog, logit, generalized logit or
scobit, power logit and logit using a quadratic term when fitted to the beetle data set. The
generalized logistic link given by Stukel (1998) and the generalized probit link given by
Czado (1994) were not considered since the first leads to an improper posterior distribution
when improper uniform priors are considered (Chen et al., 1999) and the second is not
favored over the logit link using a quadratic term, as reported in Czado and Raftery (2003),
using approximate Bayes factors (Kass and Raftery, 1995).

In all cases noninformative priors for the regression parameters are used. To facilitate
model comparisons, as in Spiegelhalter et al. (1996), we consider the following reparame-
terization and priors for the regression parameters:

ηi = β∗0+β1(xi−x), with β0 = β∗0−β1x, β1 ∼ N(0, 1000), β∗0 ∼ N(0, 1000).

For all links in the gsp class considered it is assumed that δ ∼ U(−1, 1) when considered
the delta parameterization (in generalized, standard and BBB sp ) and λ ∼ N(0, 100) when
considered the lambda parameterization (in CDS sp). For the parameters associated with
the generalized sp link it is assumed that µ and σ2 are estimated from the data set, hence
diffuse priors are considered. That is, µ ∼ N(0, 1000) and τ ∼ Gamma(0.001, 0.001)
where τ = 1/σ2 is the precision parameter.

All the above models were implemented in WINBugs and in all cases an effective
sample size of 2000 was considered. Since that presence of autocorrelations between chain
values is expected due to the augmentation scheme (Chen et al., 2000), for comparison,
the decision on the number of the iterations and thin values used is defined by considering
the first autocorrelations in the chains to be smaller than 0.5. In addition, several criteria
computed using the BOA and CODA package, including the one proposed by Geweke
(1993) was used to evaluate convergence. Running Mean Plots for each chain, for all the
links considered, provide strong indication of chain convergence in all cases. Thin values
used and time of execution (time in seconds to perform 10000 iterations on a Pentium IV
with 3000 MHZ and 512 Ram) to the links considered are shown in Table 2.

A variety of methodologies exist to compare alternative bayesian model fits but the
principal criterions used in those works are the Deviance Information Criterion (DIC)
proposed by Spiegelhalter et al. (2002), and Expected Information Criteria correspond-
ing to Akaike (EAIC), Schwarz and Bayesian (EBIC) as proposed in Carlin e Louis
(2000) and Brooks (2002). The criteria are based in the Posterior mean of the deviance:
E

[
D(β, θ)

]
which is also a measure of fit that can be approximated by using the MCMC

algorithm, considering the value of Dbar = 1
G

∑G
i=1 D(βg,θg), where the index g repre-

sent the g-ith realization of a total of G realizations, where D(β,θ) = −2ln(p(y|β, θ, )) =
−2

∑n
i=1 lnP (Yi = yi|β, θ), is the bayesian deviance (Dempster, 1977).

EAIC, EBIC and DIC can be estimated using MCMC by considering ÊAIC = Dbar +
2p, ÊBIC = Dbar + plogN and D̂IC = Dbar + ρ̂D = 2Dbar − Dhat respectively,
where p is the number of parameters in the model, N is the total number of observations
and ρD, namely the effective number of parameters, is defined as ρD = E

[
D(β, θ)

]
−

D
[
E(β), E(θ)

]
and Dhat = D

(
1
G

∑G
i=1 βg, 1

G

∑G
i=1 θg,

)
is an estimate of D

[
E(β), E(θ), E(u))

]
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the deviance of posterior mean obtained when considering the means values of the gener-
ated posterior means of the model parameters.

In the hierarchical modelling representation to the gsp class, we use the complete-
data likelihood function with observed and auxiliary latent variables (as fixed and random
effects respectively ) to obtain the posterior distributions to the parameter of interesse.
In these cases, we consider marginal DIC to observed variables because the focus of the
analysis is p(y|β, θ). In addition, to the gsp class only, we propose using the median of
Sum-of-squares of posterior latent residual (SSPLR =

∑n
i=1 e∗i ) as a global measure of

discrepancy to model comparison. This late approach is only applicable to the gsp class
of links since that latent residuals are available only in this case. These values are shown
in Table 2.

Given the comparison of two alternative models, the model that fits better a data
set is the model with the smallest value of the posterior mean of the deviance, DIC,
EBIC, EAIC and SSPLR. In the presence of auxiliary latent variables, EAIC and
EBIC are easily implemented because 2p and plogN are fixed to penalize posterior mean
deviance but in hierarchical models, it is not easy to define p and N . Moreover, there is no
consensus in the use of the Deviance of the posterior mean (see discussion in Spiegelhalter
et al., 2003). By considering these aspects, the use of more than one criteria seems more
appropriate to models comparison.

Table 2: Model comparison for the beetle mortality data

class models thin time Dbar DIC EBIC EAIC SSPLR
(sec.)

non-gsp logit 5 37 374.40 376.4 386.8 378.4
cloglog 5 41 366.7 368.7 379.1 370.7
scobit 65 48 369.2 369.5 381.5 373.2

power-logit 40 48 367.6 368.5 379.9 371.6
quadratic logit 15000 57 373.8 375.8 392.3 379.8

gsp probit 5 39 373.4 375.4 385.8 377.4 480.8
CDS sp 610 199 160.4 273.4 178.9 166.4 479.8
BBB sp 470 165 295.2 277.5 313.7 301.2 242.7

standard sp 200 83 268.5 242.2 287.0 274.5 232.2
complete sp 400 64 269.3 110.0 300.2 279.3 815.5

The model checking criteria used in Table 2 confirms results in Collet (2003, p. 149),
where it is noted (using deviance and frequentist residuals) that a cloglog link fits this
data as well as the polynomial logistic link using a quadratic term and both present better
fit than the logistic model. This can also be easily verified by using, for example, GLM in
SPlus. Note that the scobit and power logit link are also adequate in relation to symmetric
links. However, from Table 2, it is clear that the asymmetric links in the gsp class are
more adequate for the data set analyzed than the non-gsp links. Note that standard sp is
better when considering SSPLR and that CDS sp is better when Dbar, EBIC and EAIC
are used. Also, complete sp is better when DIC is used, which is explained by the fact
that Dhat has high value as consequence of the variability associate with the estimation of
parameters µ and σ2 and, consequently, the SSPLR estimate is also high. It is interesting
to observe the good performance of the standard sp link using DIC and SSPLR, which
can be considered the best of the asymmetric links with three parameters, since the good
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performance of CDS sp with EBIC and EAIC criteria seems to be consequence of the
low value of the the Posterior Expected Deviance (Dbar) obtained with this link, which
is reflected in EBIC and EAIC.

Moreover, by considering time of execution for the different models in Table 2, we note
that in the gsp class of links, the time of execution is high as is also observed in Bazán et
al. (2005) for the BBB sp when applied to Item Response Theory models. By considering
this fact, thin values up to 400 are recommended and consequently a large number of
iterations are necessary for inference based on the joint posterior density of the gsp class.
Note also that the time required to simulate the chains with the cloglog links is smaller
since that presence of high autocorrelations are not observed. On the other hand, the time
of execution with the scobit link, and especially, with the quadratic logit are somewhat
higher so that large thin values are necessary to diminish the first autocorrelations. In
the future methods such as joint updating (Holmes and Held, 2006) can be considered to
guarantee reduction of autocorrelations in the gsp class.

In addition, we consider that any skew-probit link in the gsp class is also more con-
venient for this data set since the cloglog link has no parameters controlling the rate of
increasing (or decreasing) of the probability of success (failure) of the binary response and
other parameters associated with this probability. We also consider that the gsp class is
more adequate for this data set than other asymmetric links since the gsp class is easily
implemented and it is unnecessary range specification for their implementation as dis-
cussed in the Introduction to other asymmetrical links. Moreover, as shown in Section 5,
the posterior considered are proper for the generalized skew probit link, which is not the
case for other asymmetric links, as is the case with the one due to Stukel (Chen et al., 1999).
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Figure 2: Running means for each parameter with the standard gsp link for the beetle
data set

Finally, Table 3 reports, posterior statistics for the asymmetry parameter in the skew-
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probit models. As is expected, the values of the asymmetry parameters have different
signs in the CDS sp and BBB sp links. Note also that for this data set, the 95% HPD
interval to the asymmetry parameter in BBB, standard and complete sp links include zero:
however, this is not the case for the CDS sp model and therefore the later model can be
more adequate.

Table 3: Posterior summary for asymmetry parameters of the gsp class models with beetle
mortality data

models parameter mean median 95 % HPD MCerror
Lower Bound Upper Bound

CDS sp λ 4.19 4.02 1.43 7.82 0.07
BBB sp δ -0.48 -0.70 -0.99 0.46 0.02

λ -1.33 -0.99 -4.46 0.87 0.05
standard sp δ -0.61 -0.86 -0.99 0.46 0.02

λ -1.78 -1.69 -497.3 0.98 0.07
complete sp δ -0.59 -0.85 -1.0 0.45 0.02

λ -1.72 -1.58 -517.9 0.81 0.07
µ -0.02 -0.29 -4.33 456.5 0.57
σ 9.93 6.38 0.03 317.1 0.59

Figure 3 depicts estimated posterior densities of each parameter in the standard gsp
link. Note that the posterior densities for the δ (λ) parameters are somewhat skew so that
the posterior mean seems not to be an adequate summary statistics.
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Beetle data set
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8.2 Prostatic data set

Chib (1995), Collet (2003) and Congdon (2001) consider alternative models for the pres-
ence (or not) of prostatic nodal involvement in a sample of 53 cancer patients. The data
set includes a binary response variable y that takes the value 1 if cancer had spread to
the surrounding lymph nodes and value zero otherwise. Five explanatory variables are
considered: age of the patient in years at diagnosis (x1); level of serum acid phosphate
(x2); the result of an X-ray examination, coded 0 if negative and 1 if positive (x3); the
size of the tumor, coded 0 if small and 1 if large (x4); and the pathological grade of the
tumor, code 0 if less serious and 1 if more serious (x5). The cited authors considered nine
possible models (see Table 4), and showed the improvement obtained over the constant
model (model 1) by the model involving the constant and x3 (model 4), and by a more
complex model involving the constant, logx2, x3 and x4 (model 8). Finally, the most
complex model considered adds x5 to model 8 (model 9).

By considering binary probit regression and different criteria of the fit, Chib (1995),
Collet (2003) and Congdon (2001) conclude that the model 4 fits the data set better than
model 1, and model 8 fits better than model 9. Congdon (2001) argues that there seems
to be little difference between models 8 and 9.

We evaluate the potential use of Probit, CDS, BBB and standard sp links for the
nine models considered by Chib (1995) and introduce the models 10, 11, 12 and 13 by
considering the x2 and not logx2 in the models 3, 7, 8 and 9, respectively. However, the
MCMC algorithms seems not to converge when using the CDS sp link, as can be depicted
from Figure 4, considering 1000000 iterations and thin values between 50 to 500. In the
other cases, chain convergence was found for 100000 iterations after bur-in and a thin
value of 50.

To compare the fits for the models entertained, we considered the same criteria used
in Section 8.1 (DIC, EAIC, EBIC, Dbar and SSPLR). The priors considered to β are
the ones given by Chib (1995) and Congdon (2001). That is, we consider β2 N(0, 25),
β1 N(0, 100) and βj N(0.75, 25), j = 3, 4, 5, 6, δ ∼ U(−1, 1) (for standard and BBB sp
links) and λ ∼ N(0, 100) (CDS sp link). The results are showed in Table 4.

For the probit link, as expected, model 4 shows improvement over model 1 (using
Dbar, DIC, EAIC and EBIC criteria), and model 8 over model 9 (using SSRL, DIC,
EAIC and EBIC criteria). Moreover, models 10, 11, 12 and 13 are worst than models 3,
7, 8 and 9, respectively. Then, the inclusion of the logx2 is justified. A similar conduct is
observed when considering the standard sp link. Using BBB sp link, the conduct is also
similar with exception that model 8 is better than 9 only using DIC and SSPLR, but
not using DBAR, EAIC and EBIC criteria.

In general, most criteria indicate models 8, 9, 13 and 7, as most adequate. However,
order of preference seems to depend on the link function. The above ordering is given for
the probit link. For the standard sp link, the order is 8, 7, 9 and 13; and 9,8, 13 and 7 for
the BBB sp link. The other models seems not appropriate.

By comparing models using different gsp links, we find that the models under BBB
and Standard sp are better than the corresponding models using probit link.

We also obtained estimates for the percentage of correct predictions for the best models.
It is obtained by evaluation the posterior probabilities for each model, by considering the
posterior summary of β and λ (mean and median, respectively) and the values of the
explanatory variable. Using the probit link, the values are: 69.8%, 73.6%, 75.5% and
79.2% for the models 7, 8, 9 and 13, respectively, but invoking the principle of parsimony,
model 8 should be considered.
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Figure 4: Chain history and posterior densities for the parameters in Model 8 under CDS
link for the prostatic data set

For the standard and BBB sp links, the values are 75.5%, 75.5%, 75.5%, 79.2% and
69.8%, 75.5%, 75.5%, 79.2%, respectively. We observe that models 8, 9 and 13 (in this or-
der) present better prediction than model 7, but again invoking the principle of parsimony,
model 8 should be considered with both links.

Finally, by considering both criteria, we indicate that model 8 using the standard sp
link is an alternative to model 8, using probit link to the data set considered. Another
alternative model is model 9 using BBB sp.

9 Extensions and Discussion

This article proposes a new asymmetrical link for binary response by considering the cu-
mulative distribution of the skew-normal distribution (Dalla-Valle, 2004). The generalized
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skew-probit class link introduced has as particular cases the skew-probit link due to Chen
et al. (1999), the skew-probit link due Bazán et al. (2005) and the probit link. This model
introduces a parameter for the asymmetry of the response curves that is easily interpreted
and defines a class of asymmetric links that controls the rate of increasing (or decreasing)
of the probability of success (failure) of the binary responses.

Furthermore, corresponding to this link, the probability of success is obtained by con-
sidering the cdf of a distribution function evaluated at the linear predictor. The asymmetry
parameter is associated with the distribution chosen and is independent of the linear pre-
dictor and the latent linear structure is not necessary for model formulation. With this,
the formulation of the generalized skew probit model seems more appropriate than the
formulation due to Chen et al. (1999) and they mention that the model can be easily
generalized (see Chen, 2004).

Moreover, the gsp class is a fixed effects model, assuming that all observations are
independent of each other, and is not appropriate for the analysis of several types of
correlated data structures, in particular, for clustered and/or longitudinal data and more
generally, in multilevel models. In this case mixed models for binary response can easily
proposed by extending the gsp class . Assume there are i = 1, . . . , n, subjects (level-2
units), and j = 1, . . . , ni, repeated observations (level-1 units), nested within each subject.
Denote zij as the r×1 vector of variables having random effects (a column of ones is usually
included for the random intercept) and bi a vector of random effect that can be assumed
to follow a multivariate normal distribution with mean vector 0 and variance-covariance
matrix Σb or a multivariate skew-normal distribution (see Arellano et al, 2005). In this
case the model in (1) is now written as

ηij = x′ijβ + z′ijbi,

j = 1, . . . , ni, i = 1, . . . , n. Note that pij is now specified as E(yij |bi, xij), namely, in terms
of the vector of random effects. The results shown in the paper regarding the augmented
likelihood are valid and can be easily applied to this new model since hardly a hierarchical
structure is added to the hierarchical structure in Section 6 corresponding to the random
effects model introduced, bi ∼ Nr(0,Σb) or bi ∼ SNr(µ,Σ,∆) (see notation in Arellano
et al., 2005). In a particular case of that, if the vector of random effects is not considered,
then we have the multivariate skew probit model as the multivariate probit model (Chib
and Greenberg, 1998).

Moreover, extensions of the methods developed in this paper for dichotomous responses
to ordinal response data (Albert and Chib, 1993) follow, by considering this model in terms
of cumulative probabilities, so that the conditional probability of a response in category c
is obtained as the difference of two conditional cumulative probabilities:

P (Yij = c|bi,xij , zij) = Fθ(ηijc)− Fθ(ηijc−1)

where
ηijc = γc − [x′ijβ + z′ijbi]

with c− 1 strictly increasing model thresholds γc. Thus, we have a random-effects ordinal
regression model for multilevel analysis.

Applications in several areas where symmetric links are not justified can be obtained
with the proposed model. It includes binomial models, epidemiological studies, multilevel
modelling, longitudinal data analysis, meta-analysis and item response theory. Applica-
tions of the gsp class link proposed to item response models can seen in Bazán et al.
(2005). For others application in regression see Chen et al. (1999).
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Main results about the existence of Maximum Likelihood estimators and propriety of
the posterior distributions of the parameters of the model when improper uniform priors
are chosen are given. A Bayesian estimation approach is developed and implementations of
the approach can be easily obtained by considering the versions of the augmented likelihood
proposed, particularly the version introduced in Section 5. That is an attractive aspect
of the model that can be implemented via MCMC by using software as WinBugs with
uniform priors.

However, as Johnson and Albert (1999) mention, the specification of a prior density
in binary regression can be a difficult task due to the indirect effect that the regression
parameters may exert on the success probabilities. Paulino et al. (2003) mentions that,
in a subjective bayesian analysis, the introduction of further regression parameters leads
to a potentially serious problem because these parameters do not relate directly to the
data as in the case when competing choices of the link function must be considered, which
seems, happened in the developed application. They stick to expert prior elicitation and
suggests that methods as the one proposed by Bedrick et al. (1996) can be used. In this
class of distributions, prior beliefs about the location of the success probabilities pi are
assessed for particular values of the covariates xi, and this information is used to construct
a prior for the regression parameter vector β. By considering the estimation of the success
probabilities for several models in the Table 3, the expert prior elicitation of pi can be
important for the choice of the link.

Finally other aspects in the paper is the comparison of symmetrical and asymmetrical
models by using the Deviance Information Criterion (DIC) described in Spiegelhalter et
al. (2002), the Expected Akaike Information Criterion (EAIC) and the Expected Bayesian
Information (Schwarz) Criterion (EBIC) proposed in Brooks (2002). We also introduce
latent residuals for the models and global discrepancy measures as the posterior sum-of-
squares of latent residuals (SSPLR), which can be used for model comparison including
different choices of the gsp class. This criterion seems to result adequate in the example
used and can be used in accordance with other approaches as the development to see the
relationship between the skew probit and probit.
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APPENDIX

Properties of the skew normal distribution

We present next some important properties of the skew normal distribution.

P1. The moments generating function is given by

MR(t) = E(etR) = 2exp

(
µt +

1
2
σ2t2

)
Φ(σδt)

P2. In particular, as consequence of P1., the mean and variance are gives by:

E[R] = µ +
√

2
π δσ and V ar[R] = (1− 2

π δ2)σ2, where δ = λ√
1+λ2

∈ [−1, 1].

Approximating to two decimals, if | δ | increases, then E[R] ∈ [µ − 0.8σ, µ + 0.8σ]
increases and V ar[R] ∈ [0.36σ2, σ2] decreases.

P3. Consider W ∼ N(0, 1) and V ∼ HN(0, 1) independent random variables with |δ| < 1.
Then, R = µ + σ

[
δV + (1 − δ2)1/2W

] ∼ SN(θ), where θ = (µ, σ2, λ), and R|V ∼
N(µ + σδv, (1− δ2)σ2).

P4. S = (R − µ)/σ ∼ SNA(λ). Also R∗ = a + bR ∼ SN(a + bµ, b2σ2, sign(b)λ) where
sign(.) is the sign function which is equal to 1 if the argument is positive and is −1
otherwise.

P5. In particular, given S ∼ SNA(λ), then S∗ = a+bS ∼ SN(a, b2, sign(b)λ) and follows
that R = µ + σS ∼ SN(µ, σ2, λ) and R = µ − σS ∼ SN(µ, σ2,−λ). Also given
S ∼ SNS(λ), then R = µ + σ(1− δ2)S ∼ SN(µ, σ2, λ).

Proofs of the Propositions

Proof of Proposition 1. From the stochastic representation given in Table 1, it follows
that:

fλ(s) =
∫ ∞

0
φ(

s− δv√
1− δ2

)g(v)dv

Hence, the cdf of S can be obtained as

Fλ(s) =
∫ s

−∞

∫ ∞

0
φ
( t− δv√

1− δ2

)
g(v)dvdt =

∫ ∞

0

[ ∫ s

−∞
φ
( t− dv√

1− δ2

)
dt

]
g(v)dv

Fλ(s) =
∫ ∞

0
Φ

( s− δv√
1− δ2

)
g(v)dv

Defining R = µ + σS, it follows that Fθ(r) = P (R ≤ r) = P (µ + σS ≤ r) = P (S ≤ r−µ
σ )

and we have, therefore,

Fθ(r) =
∫ ∞

0
Φ

( r−µ
σ − dv√
1− δ2

)
2φ(v)dv.2
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Proof of Proposition 2. Given S ∼ SNA(λ) we can write the corresponding cdf as

Fθ(s) =
∫ s

−∞
2φ(t)Φ(λt)dt =

∫ s

−∞
2φ(t)Φ(

−δt√
1− δ2

)dt = 2Φ2(s, 0;−δ).

The last equality follows from Parrish and Bergmann (1981), which shows that the cumu-
lative distribution function of the standard bivariate normal distribution with correlation
ρ evaluated at (h, k) can be written as

Φ2(h, k; ρ) =
∫ h

−∞
φ(w)Φ

( k − ρw√
1− ρ2

)
.

Hence, the desired result follows by considering the transformation R = µ + σS, Fθ(r) =
2Φ2

(
r−µ

σ , 0,−δ
)
, and Property 5 in Appendix. 2

Proof of Proposition 3. When θ is known, the likelihood function in (11) is reduced to
L(β|y, X, θ) and for simplicity we write L(β|y). Considering the prior π(β) ∝ 1, the
posterior is proper if

∫
Rk L(β|y)dβ < ∞. To see that conditions (C1 ) and (C2 ) are suffi-

cient, apply Theorems 2.3 and 3.1 given by Chen and Shao (2000). Since the skew normal
distribution is a continuous distribution such that MR(t) = E(etR) =

∫∞
−∞ etrdFθ(r) < ∞,

and, consequently, E(|uk|) = dkMR(t)
dtk

|t=0 < ∞; it has finite moments (this can be easily
verified from Property 1).

Conditions (C1) and (C2) are also sufficient for the existence of the ML estimator
which follows by considering Theorem 3.1 given in Chen and Shao (2000), since the cdf of
the skew normal distribution is continuous. 2

Proof of Proposition 4. Given improper uniform priors for λ and β, the problem to
guarantee proper posteriors was studied by Chen et al.(1999) for the CDS sp link. In
these cases, since the pdf of the half normal distribution take positives values in R and the
skew normal distribution has finite moments, by considering their Theorem 2, (C1’) and
(C2’) are necessary conditions which guarantee that the posterior distribution of (β, λ)
are proper. As p(β, λ|y, X) ∝ L(β, λ|y, X)π(β, λ), and π(β, λ) ∝ 1, we have that

∫ ∞

−∞

∫ ∞

0
L(β, λ|y,X)dβdλ < ∞

where, by (18),

L(β, λ | y, X) =
n∏

i=1

∫ ∞

0
[Φ(ηi + λvi)]

yi

[
1− Φ(ηi + λvi)

]1−yi

g(vi)dvi.

In these cases, the representation given in (2)-(4) is a linear structural subjacent to the
likelihood function above, and by considering (3) Si = ηi + λvi + ui ∼ SNS(λ). More-
over, the fact that any skew normal distribution is continuous (in particular the standard
Sahu´s skew normal distribution), and by considering that the conditions (C1’) and (C2’)
being satisfied, Theorem 5 given by Chen et al.(1999) imply that the ML estimators of
(β, λ) exist.
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To extend the results above for the skew normal distribution SN(µ, σ2, λ) where µ and
σ2 are given, consider Property 4 in this Appendix. That is, let R = µ + σ(1 − δ2)S ∼
SN(µ, σ2, λ). In this case, we have that

L(µ, σ2|y, X) =
∫ ∞

−∞

∫

Rk

L(β, θ|y,X)dβdλ < ∞

where L(β, θ|y,X) is given in (13). By considering this result, when proper priors are
specified for µ and σ2, it follows directly that

∫ ∞

0

∫ ∞

−∞
L(µ, σ2|y, X)π(µ)π(σ2)dµdσ2 < ∞

Hence, we have that the posterior distribution of (β, θ) is proper since p(β, θ|y,X) ∝
L(β, θ|y, X)π(β, λ)π(µ), π(σ2) = L(µ, σ2|y, X)π(µ)π(σ2). 2

Proof of Proposition 5. Consider si = r + e, where e ∼ SN(−µ, σ2,−λ), then

pi = P (Yi = 1) = P (si > 0) = P (e + r > 0) = P (e > −r) = 1− P (e ≤ −r)

and it follow that

p = 1− P (
e + µ

σ
≤ −r + µ

σ
) = 1− FA

−λ(
−r + µ

σ
) = FA

λ (
r − µ

σ
)

where the final expressions are obtained from Property 4 in Appendix and considering
that FA

λ (z) = 1− FA
−λ(−z) (Azzalini, 1985). Finally, by considering Property 5, we have

that p = FA
λ ( r−µ

σ , λ) = Fθ(r), where θ = (µ, σ2, λ).2
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